DIREZIONE MOBILITA', AMBIENTE ED ENERGIA

Area Ambiente ed Energia

C.U.P.: B47B15000050004

OGGETTO:

Area di laminazione del Torrente Seveso Sistemazione idraulica del Torrente Seveso

PROGETTO ESECUTIVO

IL PROGETTISTA Ing. Matteo Ghia

IL RESPONSABILE DEL **PROCEDIMENTO** Ing. Fabio Marelli

IL DIRETTORE DI AREA Dott. Angelo Pascale

Rev.	Data	Descrizione	Red.	Rev.	File
Rev. 16	Luglio 2021	Relazione specialistica PMA			

PE.65

Aggiorn.	Data	Descrizione	Redatto	Verificato	Acquisito	Approvato
0	04/02/2021	EMISSIONE	Misiani	Spezzigu	Ghia	Ghia
16	Luglio 2021	Relazione specialistica PMA				Ghia
						, in the second

CODIFICA DOCUMENTO CT 0 E B RE 1068

IL DIRETTORE TECNICO
DOTT. ING. FRANCESCO VENZA

Ordine degli Ingegneri Milano n° 14647

Dott. Ing.

FRANCESCO

VENZA

N. 14647

WCIA

D

IL PROGETTISTA RESPONSABILE DELL'INTEGRAZIONE FRA LE VARIE PRESTAZIONI SPECIALISTICHE

DOTT. ING. MATTEOXHIA Ordine degli ngegneri Pavia n° 2100

MATTEO GHIA

MATTEO GHIA

MARIENTE E TERRITORIO-SEZIONE A

SETTORE: A CIVILE ED AMBIENTALE

ANNO DI ISCRIZIONE: 2001

N° 2100

IL PROGETTISTA RESPONSABILE DOTT. ING. EMANUELA SPEZZIGU

Ordine degli Ingegneri Lodi n° 614

EMANUELA

SPEZZIGU

Sez. A - n. 614

INDICE

1	PRE	MESSA	6
2	AVIF	AUNA	7
	2.1 2.2 2.3 2.4 2.5	FINALITÀ DEL MONITORAGGIO TECNICHE DI MONITORAGGIO PUNTI/STAZIONI DI CONTROLLO RISULTATI OTTENUTI CONFRONTO CON I MONITORAGGI PRECEDENTI	. 7 . 7 . 9
3		UE SOTTERRANEE	
J	3.1 3.2 3.3 3.4 3.5	FINALITÀ DEL MONITORAGGIO TECNICHE DI MONITORAGGIO PUNTI/STAZIONI DI CONTROLLO RISULTATI OTTENUTI LIVELLI DI FALDA	11 11 12 12
4	ACQ	UE SUPERFICIALI	18
	4.1 4.2 4.3 4.4	FINALITÀ DEL MONITORAGGIO TECNICHE DI MONITORAGGIO PUNTI/STAZIONI DI CONTROLLO RISULTATI OTTENUTI	18 19
5	RUM	ORE	27
	5.1 5.2 5.3	FINALITÀ DEL MONITORAGGIO PUNTI/STAZIONI DI CONTROLLO RISULTATI OTTENUTI	27
6	ATM	OSFERA - MONITORAGGIO IN CONTINUO	30
	6.1 6.2 6.3 6.4	FINALITÀ DEL MONITORAGGIO TECNICHE DI MONITORAGGIO PUNTI/STAZIONI DI CONTROLLO RISULTATI OTTENUTI	30 30
7	ALLE	GATO 1 - AVIFAUNA 11/06/2021	34
8	ALLE	GATO 2 - ACQUE SOTTERRANEE 24/06/2021	35
9	ALLE	GATO 3 - ACQUE SUPERFICIALI 24/06/2021	36
10	ALLE	GATO 4 - RUMORE 20-22/06/2021	37
11	ALLE	GATO 5 - RUMORE 18-20/07/2021	38
12	ALLE	GATO 6 - ATMOSFERA 14/06/2021 - 25/07/2021	39
13	ALLE	GATO 7 – PLANIMETRIA LAVORAZIONI GIUGNO 2021	40
14	ΔΙΙΕ	GATO 8 - PLANIMETRIA LAVORAZIONI LUGLIO 2021	41

15	ALLEGATO 9 - REGISTRO BAGNATURE GIUGNO 2021	12
16	ALLEGATO 10 - REGISTRO BAGNATURE LUGLIO 2021	13

1 PREMESSA

Con Decreto del Delegato del Commissario Governativo n. 63. del 28/09/2020 è stato approvato il piano di monitoraggio ambientale (di seguito PMA) relativo all'intervento di realizzazione dell'area di laminazione del torrente Seveso in comune di Milano.

Il presente documento costituisce la relazione specialistica di sintesi relativamente ai monitoraggi eseguiti delle componenti:

- Avifauna (11/06/2021)
- Acque sotterranee (24/06/2021)
- Acque superficiali (24/06/2021)
- Rumore (20-22/06/2021 e 18-20/07/2021)
- Atmosfera monitoraggio in continuo (14/06/2021 25/07/2021)

Di seguito si riportano i risultati dei monitoraggi eseguiti.

2 AVIFAUNA

2.1 FINALITÀ DEL MONITORAGGIO

Il monitoraggio dell'avifauna durante le attività di cantiere permetterà di valutare le composizioni quali-quantitative del popolamento avifaunistico nelle diverse aree protette e soprattutto permetterà di fare un confronto con i risultati delle indagini precedenti 2009-2011.

2.2 TECNICHE DI MONITORAGGIO

Lo studio dell'avifauna, si basa su metodologie diverse e complementari che hanno richiesto l'applicazione di protocolli standard di censimento (Bibby et al. 2000; Sutherland, 2006) tramite l'applicazione di transetti lineari.

Il censimento lungo transetti si basa sull'osservazione e sul conteggio degli individui presenti in una fascia di 100 m intorno ad un percorso più o meno lineare, lungo cui si muove l'osservatore, che riporta su mappe di dettaglio e schede apposite i risultati delle proprie osservazioni. Nel caso specifico, l'indagine è stata eseguita da due osservatori che percorrendo simultaneamente il transetto registrano gli esemplari individuati al lato destro e sinistro. Le osservazioni sono iniziate all'alba e sono state concluse entro le ore 11.00.

Nel dettaglio i rilievi sono stati effettuati impiegando una scheda di monitoraggio, in cui sono stati rilevati i seguenti dati:

- Dati generali: codice transetto, rilevatore, data del rilievo, entità del disturbo antropico, ora inizio rilievo, ora fine rilievo;
- Dati specifici: per ciascuna specie individuata, viene riportato:
 - il numero di individui conteggiati tramite rilievo diretto degli esemplari avvistati, il conteggio degli esemplari al canto (ossia esemplari per cui non è stato eseguito un avvistamento diretto), e l'individuazione di segni indiretti che rappresentano la presenza della specie (es. nidi);
 - o la fenologia della specie (S: stanziale; M: migratorio; W: svernante; N: nidificante);
 - o l'identificazione GPS dei segni indiretti;
 - o l'identificazione delle foto effettuate.
- Note: eventuali peculiarità rilevate.

2.3 PUNTI/STAZIONI DI CONTROLLO

Nella figura sottostante vengono indicati i transetti lungo i quali è stato eseguito il monitoraggio dell'avifauna.

Figura 2-1 Ubicazione dei transetti per il monitoraggio dell'avifauna

Sono stati individuati 7 transetti di 400 metri di lunghezza l'uno, utilizzando i transetti già impiegati per lo studio redatto da Casale et. Al 2014, più prossimi al sito di indagine. La localizzazione in campo dei transetti è avvenuta tramite l'impiego del GPS Garmin GPSmap 62sc.

Nel dettaglio di seguito si riporta la descrizione di ciascun transetto:

- A1: risulta localizzato a nord del Cimitero di Bruzzano, in un'area in parte prativa in parte boscata. Il disturbo antropico risulta modesto, in quanto risulta altamente frequentato dai fruitori del parco;
- A2: risulta localizzato ad est del Lago di Bruzzano. La parte nord risulta inserita all'interno
 del bosco, la parte centrale risulta in adiacenza del Lago di Bruzzano, mentre la parte sud
 presenta un viale alberato e prato. Il disturbo antropico risulta modesto, in quanto risulta
 altamente frequentato dai fruitori del parco;
- A3: risulta localizzato in prossimità di Via dei Finanzieri d'Italia e Via del Regno Italico. La
 parte centrale risulta costituita da bosco, mentre le parti laterali sono costituite da prato. Il
 disturbo antropico risulta modesto, in quanto risulta altamente frequentato dai fruitori del
 parco;
- A4: risulta localizzato a nord del Lago di Niguarda. Il transetto risulta situato all'interno del viale alberato con i margini costituiti da bosco e prato. Il disturbo antropico risulta modesto, in quanto risulta altamente frequentato dai fruitori del parco;
- A5: risulta localizzato ad est di Via Giuditta Pasta e a sud del Lago di Niguarda. Il transetto risulta situato per gran parte all'interno del prato. I margini sono costituiti da bosco e lago. Il disturbo antropico risulta modesto, in quanto risulta altamente frequentato dai fruitori del parco;
- A6: risulta localizzato a sud di Via Alessandro Bisnati ed è situato per gran parte all'interno del prato. I margini sono costituiti da bosco. Il disturbo antropico risulta modesto, in quanto risulta altamente frequentato dai fruitori del parco;
- A7: risulta localizzato ad ovest di Via Carlo Moreschi ed è situato per gran parte all'interno del prato. I margini sono costituiti da bosco. Il disturbo antropico risulta elevato, a causa dell'intenso traffico automobilistico nel vicino Viale Enrico Fermi.

Nel mese di giugno è stata eseguita una campagna di monitoraggio in data 11/06/2021.

2.4 RISULTATI OTTENUTI

Al fine di valutare l'effetto dei lavori in corso d'opera sulla componente avifauna, e considerando che le caratteristiche ecologiche dei diversi siti di rilievo risultano variegate, i risultati dei transetti sono stati standardizzati sulla base del numero di specie presenti, sulla base dell'habitat colonizzato e sul numero di individui rilevati.

Nel quinto monitoraggio dell'avifauna, eseguito giorno 11/06/2021, le specie prevalenti risultano costituite dal Merlo (*Turdus merula*), dal Fringuello (*Fringilla coelebs*) e dal Codibugnolo (*Aegithalos caudatus*). Si segnala la presenza di una specie alloctona, il Parrocchetto dal collare (*Psittacula krameri*). La gran parte delle specie individuate sono costituite da specie sedentarie e sono state osservate alcune specie migratorie quali la Rondine (*Hirundo rustica*), Codirosso (*Phoenicurus phoenicurus*) e Luì verde (*Phylloscopus sibilatrix*).

Confrontando i risultati, rispetto alla situazione ante-operam (vedi dati nel paragrafo 2 della relazione di monitoraggio in allegato), si osserva che le specie individuate risultano comparabili. Si evidenzia che, a differenza dei dati bibliografici, non sono stati rilevati i rapaci Falco pecchiaiolo

(*Pernis apivorus*), Gheppio (*Falco tinnunculus*) e alcuni Hirundinidaee come il Balestruccio (*Delichon urbicum*).

Nei diversi transetti individuati, in media sono stati osservati 60 esemplari con una variazione rispetto alla media che risulta mediocre (coefficiente di variazione pari a 0,19).

Per quanto riguarda gli habitat colonizzati dalle specie rilevate, le specie legate ad un ambiente acquatico sono state osservate prevalentemente nei transetti A2 e A5, quelle legate ad un ambiente prativo, invece, risultano maggiormente rappresentate dal transetto A3. Inoltre, le specie legate agli ambienti boscati, in diversi transetti, prevalgono sulle specie ubiquitarie.

I transetti più vicini all'area oggetto dei lavori di scavo sono rappresentati dai transetti A1, A3 e A4. In questi transetti il numero di specie ed il numero di individui risultano nella media. Tale dato indica che, gli effetti del cantiere sull'avifauna risultano estremamente limitati.

In allegato alla presente relazione vengono riportati i dati del monitoraggio eseguito in data 11/06/2021.

2.5 CONFRONTO CON I MONITORAGGI PRECEDENTI

Nei cinque monitoraggi finora eseguiti (29/03/2021, 15/04/2021, 07/05/2021, 28/05/2021 e 11/06/2021) si possono osservare delle lievi differenze. Il numero totale di individui osservati risulta similare nei primi tre monitoraggi, mentre negli ultimi due sono stati registrati più esemplari. Il numero di specie osservate e il numero di Shannon tende ad aumentare nei diversi monitoraggi, con un leggero decremento nel quarto monitoraggio.

Dall'analisi dei dati emerge che in generale prevalgono le specie ubiquitarie, mentre le specie legate all'ambiente prativo risultano spesso poco presenti. Nel primo monitoraggio la specie prevalente risulta costituita da *Corvus cornix* mentre nei successivi prevale *Tordus merula*.

Nei due transetti caratterizzati dalla presenza di ambienti acquatici (A2 e A5), la specie prevalente risulta *Gallinula chloropus*, anche se in alcuni casi prevalgono *Sturnus vulgaris* e *Tordus merula*.

Dall'analisi della varianza relativa ai risultati, come già evidenziato nel quarto monitoraggio, si evince che non esistono delle differenze significative tra i diversi transetti.

Tale risultato conferma quindi anche da un punto di vista statistico il lieve impatto del cantiere sull'attività dell'avifauna.

3 ACQUE SOTTERRANEE

3.1 FINALITÀ DEL MONITORAGGIO

Obiettivo del monitoraggio delle acque di falda, operato sulla rete piezometrica esistente, è quello di verificare se i lavori che vengono svolti sul sito possano influire sulla qualità delle acque sotterranee.

3.2 TECNICHE DI MONITORAGGIO

Prima dell'operazione finalizzata alla raccolta del campione di acque sotterranee è stata effettuata la misura della soggiacenza della falda che, riferita alla quota di riferimento del punto di misura (laddove non coincidente con il piano campagna), fornisce il livello piezometrico della falda.

La misura dei livelli di falda è stata eseguita tramite il freatimetro in modalità manuale.

In funzione della misura di soggiacenza è stata stabilita la profondità di immersione della pompa.

Prima del prelievo delle acque è stato eseguito uno spurgo per il tempo necessario a rimuovere l'acqua presente all'interno della colonna e nel dreno, in quanto trattasi di acqua non rappresentativa dell'acquifero che si intende investigare.

Le operazioni di spurgo sono continuate fino al conseguimento delle seguenti condizioni:

- ottenimento d'acqua chiarificata e stabilizzazione dei valori relativi a pH (±0,1), temperatura, conducibilità elettrica (±3%), potenziale redox (±10mV) ed ossigeno disciolto (±0,3 mg/l) misurati in continuo durante lo spurgo;
- trascorso il tempo di emungimento determinato preventivamente in funzione delle caratteristiche idrauliche dell'acquifero.

Sul campione di acqua prelevato, con le modalità sopra indicate, sono state effettuate le determinazioni in due fasi:

- fase di campo che prevede l'uso di una sonda multiparametrica per rilevare in situ i principali parametri chimico-fisici (temperatura, pH, conducibilità, ossigeno disciolto);
- fase di laboratorio per l'esecuzione delle analisi chimico fisiche dei campioni di acque sotterrane prelevati. Sul campione destinato all'attività di laboratorio andrà effettuato il pretrattamento dei campioni (filtrazione ed eventuale acidificazione) conformemente a quanto previsto dalle procedure generali di ARPA.

I parametri relativi alla componente acque sotterranee, indicatori della qualità dell'acqua, sottoposti al piano di monitoraggio sono:

• TOC, torbidità, cloruri, solfati, ammoniaca, nitriti, nitrati, metalli [Hg, As, Cd, Cr tot., Cr VI, Fe, Ni, Pb, Cu, Mn, Zn, Al], tensioattivi anionici e non ionici, idrocarburi totali (come nesano), antiparassitari, composti organoalogenati, BTEX;

da integrare con le misure in campo di:

• temperatura, conducibilità elettrica, ossigeno disciolto, pH e potenziale redox.

Ai fini delle analisi sulla qualità delle acque sotterranee gli esiti analitici delle misurazioni sono confrontati con le concentrazioni soglia di contaminazione indicate nella Tabella 2 dell'Allegato 5 al Titolo V del D.Lgs. 152/06 e smi.

3.3 PUNTI/STAZIONI DI CONTROLLO

L'ubicazione dei punti di monitoraggio è stata definita in modo da posizionare i due piezometri a monte (Pz01) e a valle (Pz02) idrogeologico rispetto all'area di interesse.

Si specifica che il piezometro Pz01 corrisponde al punto CT-P1 e il piezometro Pz02 corrisponde al punto CT-P4 indicati nel PMA.

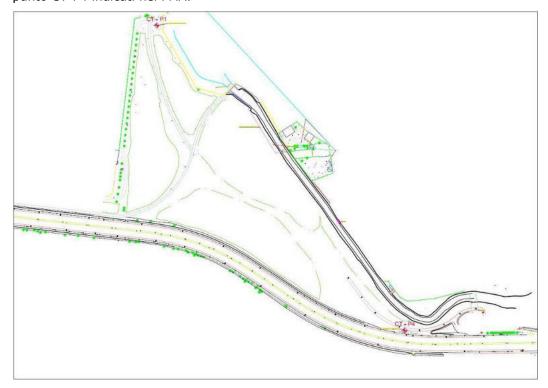


Figura 3-1 Ubicazione piezometri

3.4 RISULTATI OTTENUTI

Per completezza di risultati, vengono riportati anche gli esiti analitici delle analisi riportate nello studio d'impatto ambientale ed eseguite in ante opera.

I monitoraggi in ante opera sono stati eseguiti l'11 novembre 2015, i monitoraggi in corso d'opera sono stati eseguiti il 23 luglio 2020, il 17 novembre 2020, il 25 marzo 2021 e il 24 giugno 2021.

In allegato alla presente relazione vengono riportati i certificati analitici delle analisi effettuate.

3.5 LIVELLI DI FALDA

Durante le campagne di monitoraggio sono stati misurati i valori di soggiacenza della falda.

I dati rilevati, contestualmente alle quote di riferimento topografico, sono riportati nella tabella seguente.

Tabella 3-1: Rilievi piezometrici

	Ante Opera					Corso d'Opera									
Piezometro	Quota chiusino (m s.l.m.)	Livello statico	Quota falda (m s.l.m.)	Livello statico	Quota falda (m s.l.m.)	Livello statico	Quota falda (m s.l.m.)	Livello statico	Quota falda (m s.l.m.)	Livello statico	Quota falda (m s.l.m.)	Livello statico	Quota falda (m s.l.m.)	Livello statico	Quota falda (m s.l.m.)
															•
		11-11-	2015	13/01/	2016	15/03/	2016	23-07-	2020	17-11-	2020	25-03-	2021	24-0	6-201
Pz01	141,061	-15,50	125,56	13/01/ -15,9	7 2016 125,161	15/03/ -16,19	124,871	23-07- -18	123,061	-18,10	122,961	25-03- -17,87	123,191	24-0 -18,09	122,971

3.5.1 Esito analisi

Le analisi hanno determinato i seguenti risultati:

Tabella 3-2: Esiti analitici delle campagne di monitoraggio

	DLgs		Ante Ope	ra					Corso d'Opera								
	152/06 - Al 5 Tab2		11-11-2015		13/01/2016		15/03/	15/03/2016		23-07-2020		17-11-2020		25-03-2021		24-06-2021	
Analyte	Units	Leg Lim Max	PZ1 (P1)	PZ2 (P4)	PZ1 (P1)	PZ2 (P4)	PZ1 (P1)	PZ2 (P4)	PZ1 (P1)	PZ2 (P4)	PZ1 (P1)	PZ2 (P4)	PZ1 (P1)	PZ2 (P4)	PZ1 (P1)	PZ2 (P4)	
pH	рН	-	8,4	8	6,9	6,8	6,72	6,64	7,11	7,14	6,88	6,81	7,19	7,20	6,85	6,69	
conducibilità	μS/cm	-	930	620	650	680	732,1	692,9	676	693	574	705	726	694	734	699	
temperatura	°C	-	17	17	16	16	18,15	17,38	16,83	17,20	16,59	20,34	16,05	17,73	17,01	17,71	
potenziale Red-Ox	mV	-	420	140	180	200	120	136	98,9	91,9	245,0	257,3	162,8	166,2	92	135	
ossigeno disciolto	mg/L	-	8,1	8,5	4,1	7,2	5,79	6,63	0,99	3,07	5,81	6,81	6,88	8,08	6,98	7,60	
Carbonio organico totale (TOC)	mg/l	-	*	*	*	*	*	*	<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	<0,50	0,98	

Azoto ammoniacale * * * <0,50 <0,50 <0,50 <0,50 <0,50 <0,50 0,0102 0,115 mg/l (NH4) (da calcolo) Inquinanti inorganici: * * * * * * - Nitriti 500 <100 <100 <100 <100 <100 <100 <30,0 <30,0 μg/l * * * * * * 38 - Nitrati mg/I 23,8 14,4 29,2 28,1 41,2 41,2 38 * * * * * - Cloruri mg/l * 32,8 56,7 42,6 59,4 47,4 49,6 53 50 * * * * * * - Solfati 250 35,5 37,5 51 mg/l 46,0 47,6 53,1 45,6 53 0,33 Tensioattivi totali: * <0,30 <0,30 0,34 0,54 0,54 0,340 0,270 ma/l * - Tensioattivi anionici * * * * * <0,10 <0,10 0,13 0,14 0,34 0,34 <0,0500 <0,0500 mg/l Tensioattivi non * * * <0,20 <0,2 <0,2 <0,2 <0,0500 <0,0500 mg/l <0,20 <0,2 ionici Metalli sul filtrato: - alluminio 200 * * * * * * 3,7 13,1 56,4 125 <1,0 1,6 <10.0 <10.0 μg/l 0,65 0,73 0,67 0,74 0,63 0,73 <1,0 <1,0 <1,0 1.0 <1,0 <1,0 <1,00 <1,00 - arsenico 10 μg/L 5 0,079 <0,062 <0,062 <0,062 <0,05 <0,05 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,30 <0,30 - cadmio μg/L 5 - cromo totale μg/L 50 4,1 7,9 8,7 4,1 6,7 2,6 1,2 2,5 2,0 2,6 2,3 3,0 2,9 - cromo (VI) μg/L 3,6 7,1 3,1 5,6 2 3,2 2,5 1,1 2,4 1,9 2,6 2,3 2,39 2,17 * * * * * 1,2 23,1 2,5 <20,0 <20,0 - ferro μg/l 200 2,0 39,9 <1,0 <1,0 <1,0 <0,50 <0,50 50 <1,0 1,9 2,4 <1,0 - manganese μg/l μg/L 1 <0,084 <0.084 <0.084 <0.084 < 0.1 <0,1 < 0.1 <0.1 < 0.1 < 0.1 <0,1 <0,1 <0.10 <0,10 - mercurio 1,3 2 1,4 2,4 1,9 2,5 1,6 2,04 1,73 nichel μg/L 20 1,8 1,2 2,8 2,1 1,6 0,26 <0,22 <0,22 <0,22 <0,50 <0,50 - piombo μg/L 10 < 0,1 < 0,1 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 μg/L 0,3 - rame 1000 0,66 0,35 0,33 <1,0 <1,0 <10 <10 <10 <10 <10 <10 <1,00 <1,00 7,7 3000 14 5,2 21 <10 52,6 <10 <10 16,5 <1,0 <1,0 <10 14,1 <10 zinco μg/L Idrocarburi totali <8,2 <8,2 <20 0 0 μg/L 350 <8,2 <8,2 < 20 <20 <20 < 20 < 20 < 20 < 20 (come n-esano): Idrocarburi * * * * * <10 <10 <10 <10 μg/l < 10 <10 <10 <10 (C6÷C10) (n-esano) Idrocarburi * * * * * * μg/l <10 <10 <10 <10 <10 <10 <100 <100 (C10+C40) (n-esano)

Alifatici Clorurati Cancerogeni: <0,06 <0,06 <0,06 <0,06 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,040 <0,040 - clorometano μg/L 1,5 0,43 0,34 0,58 0,74 0,72 0,15 0,21 0,26 0,31 0,31 0,48 0,12 0,22 0,64 0,202 cloroformio μg/L <0,022 <0,022 <0,01 <0,01 <0,050 - cloruro di vinile μg/L 0,5 <0,022 <0,022 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,050 - 1,2-dicloroetano μg/L <0,048 <0,048 <0,048 <0,048 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,030 <0,030 0,05 <0,0049 <0,0049 <0,0049 0,096 0,036 <0,005 <0,005 <0,005 <0,005 <0,005 <0,005 0,023 0,038 1,1-dicloroetilene μg/L 0,059 0,66 0,36 - tricloroetilene μg/L 0,63 0,51 0,52 0,40 0,35 0,28 0,33 1,5 0.48 0.46 0,66 3,2 1,8 - tetracloroetilene μg/L 1,1 3,4 2,3 5,8 4,2 3,9 3,0 6,4 0,85 4,5 1,6 4,24 1,48 3,4 1,16 - esaclorobutadiene μg/L 0,15 <0,014 <0,014 <0,015 <0,015 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,015 <0,015 sommatoria μg/L 10 4,1 3,2 6,8 5,4 5 3,9 9,9 3,2 5,2 2,8 4,9 2,5 3,91 2,25 organoalogenati Alifatici Clorurati non Cancerogeni: 0,031 - 1,1-dicloroetano μg/L 810 <0,052 <0,052 <0,052 <0,052 0,12 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,04 <0,04 1,2-dicloroetilene 60 0,17 0,17 0,3 0,32 0,24 0,26 0,41 0,39 <0,02 <0,02 <0,02 <0,02 0,065 0,15 μg/L (cis+trans) - 1,2-dicloropropano μg/L 0,15 <0,014 0,15 <0,014 <0,014 0,041 0,095 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 0,0132 0,045 - 1,1,2-tricloroetano μg/L 0,2 <0.02 <0,02 <0,02 <0,02 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,01 <0,02 <0,02 1,2,3μg/L 0,001 <0,021 <0,021 <0,021 <0,021 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 tricloropropano 1,1,2,2μg/L 0,05 <0,0049 <0,0049 <0,0049 | <0,0049 | <0,005 | <0,005 <0,005 <0,005 <0,005 <0,005 | <0,005 | <0,005 <0,005 <0,005 tetracloroetano Composti organici _ _ aromatici: 1 * <0,1 < 0.1 < 0.1 <0,05 <0,05 - Benzene μg/l < 0,1 < 0.1 < 0,1 - Etilbenzene * * * <0,05 <0,05 μg/l 50 <1 <1 <1 <1 <1 <1 - Stirene μg/l 25 * * * * * * <1 <1 <1 <1 <1 <1 <0,05 <0,05 * * * * * * 0,128 0,050 - Toluene 15 <1 μg/l <1 <1 <1 <1 <1 * 10 0,082 0,068 p-Xilene μg/l <1 <1 <1 <1 <1 <1

Policiclici Composti Aromatici: 0,0019 <0,00051 0,006 <0,005 <0,005 <0,005 benzo[a]antracene μg/L 0,1 * * <0,005 <0,005 * * * * * 0,01 0,0012 <0,00073 <0,005 <0,005 benzo[a]pirene μg/L 0,0011 <0,00069 * * <0,005 <0,005 <0,005 * * * * - benzo[b]fluorantene μg/L 0,1 0,006 * * * * - benzo[k]fluorantene μg/L 0,05 <0,00049 <0,00049 * 0,007 <0,005 <0,005 <0,005 * * * * <0,005 <0,005 * * * <0,00045 <0,00045 * <0,005 <0,005 * benzo[q,h,i]perilene μg/L 0,01 5 0.0019 <0.00046 * 0,010 <0.005 <0,005 <0,005 * - crisene μg/L <0,005 <0,005 μg/L 0.01 <0.00042 <0,00042 * * <0.005 <0,005 * * * * dibenzo[a,h]antracene indeno[1,2,3-<0,00053 <0,00053 * * <0,005 <0,005 <0,005 * * * * μg/L 0,1 <0,005 cd]pirene * * <0,005 <0,005 <0,005 * * * * μg/L 50 0,0013 <0,00061 0,011 - pirene sommatoria * * * * * * μg/L 0,1 0,0011 <0,00069 0,013 <0,01 <0,01 <0,01 * * policiclici aromatici Fitofarmaci: - Alaclor * * * * * * <0,005 <0,005 <0,005 <0,005 <0,010 <0,010 μg/l 0,1 - Aldrin 0,03 * * * * * <0,005 <0,005 <0,005 <0,0030 <0,0030 μg/l <0,005 - Atrazina μg/l 0,3 * * * * * * * <0,005 <0,005 <0,005 <0,005 <0,010 <0,010 alfa-* * * <0.005 <0,005 <0.005 <0,005 <0,010 <0,010 μg/l 0,1 Esaclorocicloesano μg/l 0,1 * * * * * <0,005 <0,005 | <0,005 | <0,005 <0,010 <0,010 Esaclorocicloesano gamma-Esaclorocicloesano μg/l 0,1 * * * * <0,005 | <0,005 | <0,005 | <0,005 <0,010 <0,010 (Lindano) * * * * * <0,005 <0,005 <0,005 - Clordano (cis+trans) μg/l 0,1 <0,005 <0,010 <0,010 * * - DDD (o-p'+p-p') μg/l 0,1 <0,005 <0,005 <0,005 <0,005 <0,0010 <0,0010 - DDT (o-p'+p-p') μg/l 0,1 * * * <0,005 <0,005 <0,005 <0,005 <0,0010 <0,0010 - DDE (o-p'+p-p') μg/l 0,1 * * * * * * <0,005 | <0,005 <0,005 <0,005 <0,0010 <0,0010

- Dieldrin	μg/l	0,03	*	*	*	*	*	*	*	*	<0,005	<0,005	<0,005	<0,005	<0,0030	<0,0030
- Endrin	μg/l	0,1	*	*	*	*	*	*	*	*	<0,005	<0,005	<0,005	<0,005	<0,010	<0,010
- Sommatoria fitofarmaci		0,5	*	*	*	*	*	*	*	*	<0,05	<0,05	<0,05	<0,05	0	0

^{*} i parametri non analizzati sono stati aggiunti o eliminati a seguito delle prescrizioni inserite nel decreto di compatibilità ambientale della Struttura Valutazione di Impatto Ambientale o a seguito di osservazioni contenute nei pareri tecnico-scientifico di Arpa.

Come si evince dai risultati riportati nella tabella precedente, durante l'ultima campagna di monitoraggio della fase di corso d'opera sono stati riscontrati dei superamenti delle CSC per gli Alifatici Clorurati Cancerogeni, nello specifico per i parametri cloroformio e tetracloroetilene.

I superamenti di cloroformio e tetracloroetilene erano già stati rilevati nelle campagne precedenti.

I superamenti sopra esposti sono stati rilevati sia nel piezometro di monte che nel piezometro di valle, tali superamenti sono pertanto riconducibili a plumes di contaminazione e focolai di inquinamento delle acque di falda presenti a monte del sito in oggetto e caratterizzanti la qualità delle acque di falda di tutto il territorio di Milano.

I superamenti riscontrati non sono riconducibili alle lavorazioni che si stanno eseguendo nel sito in oggetto.

4 ACQUE SUPERFICIALI

4.1 FINALITÀ DEL MONITORAGGIO

Obiettivo di un monitoraggio delle acque superficiali, operato sul torrente Seveso, è quello di verificare se i lavori che vengono svolti sul sito possano influire sulla qualità delle acque superficiali. Si ricorda che il progetto non è destinato ad intervenire sulla qualità delle acque del torrente, cosa che è oggetto di specifici interventi di risanamento e con i quali non si evidenziano specifici elementi di conflitto. Segnatamente, le azioni di progetto cui è sottoposta a regime la risorsa idrica (deviazione dal corso d'acqua, accumulo per breve tempo, successivo rilascio nell'alveo) non sono suscettibili, da un lato, di generare un peggioramento ulteriore dello stato di qualità né, dall'altro, di operare qualsivoglia trattamento depurativo (essendo da escludere in tal senso la significatività della sedimentazione).

4.2 TECNICHE DI MONITORAGGIO

La misura dei parametri di monte e valle è stata eseguita nello stesso giorno, in un intervallo temporale molto contenuto. Le attività di misura e campionamento non sono state svolte in periodi di forte siccità o di intense piogge o in periodi ad essi successivi.

Le attività di campionamento sono state sviluppate attraverso l'attuazione di indagini per la determinazione di parametri in situ e per il prelievo di campioni necessari per specifiche analisi di laboratorio di parametri chimico-fisici, microbiologici e di composti organici.

Per quanto attiene ai parametri in situ (nel seguito elencati) sono stati verificati direttamente in campo specifici parametri chimico-fisici tramite sonda multiparametrica, posta nell'alveo del fiume e sommersa dall'acqua.

Per quanto attiene ai prelievi di campioni da inoltrare al laboratorio per le relative analisi, le attività correlate hanno consentito la raccolta di porzioni rappresentative della matrice che è stata sottoposta ad analisi.

Il campione è stato prelevato assumendo le seguenti precauzioni:

- immersione del contenitore di raccolta in acqua, preferendo punti con una minima turbolenza;
- prelievi eseguiti evitando zone di ristagno o con influenze del fondo, della sponda o di altro genere;
- le relative caratteristiche fisiche, chimiche e biologiche fino al momento dell'analisi sono state mantenute inalterate;
- il prelievo è stato attuato in un tempo molto breve, al fine di rendere il campione rappresentativo delle condizioni presenti all'atto del prelievo.

Sul campione prelevato con le modalità sopra indicate sono state effettuate determinazioni in due fasi:

- fase di campo che ha previsto l'uso di sonde multiparametriche per rilevare in situ i principali parametri chimico-fisici (temperatura, pH, conducibilità, ossigeno disciolto);
- fase di laboratorio per l'esecuzione delle analisi chimico fisiche dei campioni di acque prelevati. Sul campione destinato all'attività di laboratorio è stato effettuato il

pretrattamento dei campioni (filtrazione ed eventuale acidificazione) conformemente a quanto previsto dalle procedure generali di ARPA.

4.3 PUNTI/STAZIONI DI CONTROLLO

Durante le attività di corso d'opera, l'ubicazione dei punti di monitoraggio è stata definita in modo da posizionare i punti di campionamento a monte (C1) e valle (C2) idrogeologico rispetto all'area d'intervento, la cui ubicazione è riportata nella figura sottostante.

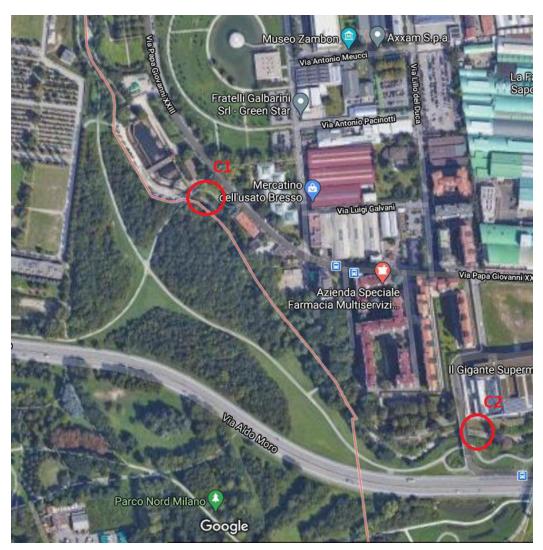


Figura 4-2 Punti monitoraggio acque superficiali CO

4.4 RISULTATI OTTENUTI

Per completezza di risultati, vengono riportati anche gli esiti analitici delle analisi riportate nello studio d'impatto ambientale ed eseguite in ante opera.

I monitoraggi in ante opera sono stati eseguiti l'11 novembre 2015, i monitoraggi in corso d'opera sono stati eseguiti il 17 novembre 2020, il 25 marzo 2021 e il 24 giugno 2021.

Si ricorda che la campagna di monitoraggio prevista il 23 luglio 2020, non è stata possibile eseguirla in quanto il Torrente Seveso era in forte siccità, come da foto sotto riportate.

Figura 4-3 Torrente Seveso in secca

In allegato alla presente relazione vengono riportati i certificati analitici delle analisi effettuate.

4.4.1 Esito analisi

Le analisi hanno determinato i seguenti risultati:

Tabella 3-3: Esiti analitici delle campagne di monitoraggio precedenti

			Ante	Opera		Corso d'Opera						
Analyte	Units	11-1	1-2015	15/0	3/2016	23-07	-2020	17-1	.1-2020	25-0	25-03-2021	
		C1	C2	C1	C2	C1	C2	C1	C2	C1	C2	
pH	-	8,5	8,4	7,65	7,69			8,04	8,45	8,31	8,92	
Temperatura	°C	14	14	*	*			12,24	11,66	12,2	16,4	
Conducibilità	μS/cm a 20°C	1000	1000	650,5	651,3			607	835	908	903	
Potenziale Redox	mV	130	120	177	191			224,1	224,1	106	108,3	
Ossigeno disciolto	mg/l	8,8	9,1	7,81	7,64			10,02	11,08	12,7	11,36	
Torbidità	NTU	*	*	*	*			3,1	3,4	0,15	2,9	
Solidi sospesi totali	mg/l	11	12	<10	22			<10	<10	<10	93	
B.O.D.5 (O2)	mg/l	6	5	<5	15			<5	<5	<5	<5	
C.O.D. (O2)	mg/l	30	32	20	66			20	21	<20	<20	
TOC	mg/l	*	*	*	*			3	<1,0	4,7	<1,0	
Azoto ammoniacale (NH4) (da calcolo)	mg/l	0,46	0,58	<0,50	2,4		0	<0,50	<0,50	<0,50	<0,50	
Azoto nitroso (N) (da calcolo)	mg/l	*	*	*	*	Torrente asciutto	asciutto	0,67	0,58	<0,1	<0,1	
Azoto nitrico (N) (da calcolo)	mg/l	5,1	5	3,8	<1,0	nte a	Torrente a	6,5	6,5	7,2	7,7	
Cloruri (Cl)	mg/l	*	*	*	*	це	rre	81	81,2	103	106	
Solfati (SO4)	mg/l	*	*	*	*	<u>1</u>	2	56,9	56,7	62,8	69,7	
Tensioattivi totali:	mg/l	*	*	*	*	0.	0.	0,44	0,51	0,61	0,59	
- Tensioattivi anionici	mg/l	*	*	*	*	seguit	eseguito	0,24	0,31	0,41	0,39	
- Tensioattivi non ionici	mg/l	*	*	*	*	Monitoraggio non eseguito	non es	<0,2	<0,2	<0,2	<0,2	
Idrocarburi totali	mg/l	<0,0082	<0,0082	<0,50	0,78	_ 0		<0,50	<0,50	<0,50	<0,50	
Fosforo totale (P)	mg/l	1	1,1	0,35	0,47	lggi	Monitoraggio	0,28	0,27	0,24	0,28	
Metalli:	-			=	=		ora	-	-		-	
- Alluminio	mg/l	*	*	*	*	onit	onit	0,035	0,039	<0,01	1,3	
- Arsenico	mg/l	0,0025	0,0026	0,0013	0,0014	Σ	Σ	<0,01	<0,01	<0,01	<0,01	

- Cadmio	mg/l	0,000072	<0,000062	<0,0005	<0,0005		<0,001	<0,001	<0,001	
- Cromo totale	mg/l	0,0061	0,0057	0,0015	0,0023		<0,01	<0,01	<0,01	
- Cromo VI	mg/l	0,00065	0,00037	<0,01	<0,01		<0,01	<0,01	<0,01	
- Ferro	mg/l	*	*	*	*		0,048	0,044	0,080	
- Manganese	mg/l	*	*	*	*		<0,01	<0,01	<0,01	
- Mercurio	mg/l	<0,000084	<0,000084	<0,001	<0,001		<0,001	<0,001	<0,001	
- Nichel	mg/l	0,015	0,015	0,0098	0,011		<0,01	<0,01	0,011	
- Piombo	mg/l	0,0018	0,0024	<0,001	0,0044		<0,01	<0,01	<0,01	
- Rame	mg/l	0,0067	0,0073	<0,01	<0,01		<0,01	<0,01	<0,01	
- Zinco	mg/l	0,047	0,054	0,018	0,037		0,016	0,022	0,032	
Solventi organici aromatici:	-	-	-	-	-		-	-	-	
- Benzene	mg/l	*	*	*	*		<0,001	<0,001	<0,001	
- Etilbenzene	mg/l	*	*	*	*		<0,001	<0,001	<0,001	
- Toluene	mg/l	*	*	*	*		<0,001	<0,001	<0,001	
- o-Xilene	mg/l	*	*	*	*		<0,001	<0,001	<0,001	
- m-Xilene	mg/l	*	*	*	*		<0,001	<0,001	<0,001	
- p-Xilene	mg/l	*	*	*	*		<0,001	<0,001	<0,001	
- Stirene	mg/l	*	*	*	*		<0,001	<0,001	<0,001	
Solventi organici aromatici	mg/l	*	*	*	*		<0,01	<0,01	<0,01	
Solventi clorurati:	=	-	-	-	-		-	-	-	
- Clorometano	mg/l	<0,00006	0,00011	<0,001	<0,001		<0,001	<0,001	<0,001	
- Cloruro di vinile	mg/l	<0,000022	<0,000022	<0,001	<0,001		<0,001	<0,001	<0,001	
- 1,1-Dicloroetilene	mg/l	<0,0000049	<0,0000049	<0,001	<0,001		<0,001	<0,001	<0,001	
- Diclorometano	mg/l	*	*	*	*		<0,001	<0,001	<0,001	
- trans-1,2- Dicloroetilene	mg/l	<0,000059	<0,000059	<0,001	<0,001		<0,001	<0,001	<0,001	
- 1,1-Dicloroetano	mg/l	<0,000052	<0,000052	<0,001	<0,001		<0,001	<0,001	<0,001	
- Triclorometano (Clororoformio)	mg/l	<0,000015	<0,000015	<0,001	<0,001		<0,001	<0,001	<0,001	
- cis-1,2- Dicloroetilene	mg/l	<0,000048	<0,000048	<0,001	<0,001		<0,001	<0,001	<0,001	
- 1,1,1-Tricloroetano	mg/l	*	*	*	*]	<0,001	<0,001	<0,001	
- Carbonio Tetracloruro	mg/l	*	*	*	*		<0,001	<0,001	<0,001	

- 1,1-Dicloropropene	mg/l	*	*	*	*		<0,001	<0,001	<0,001	<0,001
- Tricloroetilene	mg/l	<0,000048	<0,000048	<0,001	<0,001		<0,001	<0,001	<0,001	<0,001
- 1,2-Dicloroetano	mg/l	<0,000048	<0,000048	<0,001	<0,001		<0,001	<0,001	<0,001	<0,001
- 1,2-Dicloropropano	mg/l	<0,000014	<0,000014	<0,001	<0,001		<0,001	<0,001	<0,001	<0,001
- cis-1,3- Dicloropropene	mg/l	*	*	*	*		<0,001	<0,001	<0,001	<0,001
- Tetracloroetilene	mg/l	<0,000056	<0,000056	<0,001	<0,001		<0,001	<0,001	<0,001	<0,001
- 1,1,2-Tricloroetano	mg/l	<0,00002	<0,00002	<0,001	<0,001		<0,001	<0,001	<0,001	<0,001
- trans-1,3- Dicloropropene	mg/l	*	*	*	*		<0,001	<0,001	<0,001	<0,001
- 1,1,1,2- Tetracloroetano	mg/l	<0,0000049	<0,0000049	*	*		<0,001	<0,001	<0,001	<0,001
- 1,3-Dicloropropano	mg/l	*	*	*	*		<0,001	<0,001	<0,001	<0,001
- 1,1,2,2- Tetracloroetano	mg/l	*	*	<0,001	<0,001		<0,001	<0,001	<0,001	<0,001
- 1,2,3- Tricloropropano	mg/l	<0,000021	<0,000021	<0,001	<0,001		<0,001	<0,001	<0,001	<0,001
- Esaclorobutadiene	mg/l	<0,000014	<0,000014	<0,001	<0,001		<0,001	<0,001	<0,001	<0,001
Solventi clorurati	mg/l	*	*	*	*		<0,01	<0,01	<0,01	<0,01
Solventi alogenati:	-	-	-	-	-		-	-	-	-
- 1,2-Dibromo-3- cloropropano	mg/l	*	*	*	*		<0,001	<0,001	<0,001	<0,001
- Bromoclorometano	mg/l	*	*	*	*		<0,001	<0,001	<0,001	<0,001
- Dibromometano	mg/l	*	*	*	*		<0,001	<0,001	<0,001	<0,001
- Bromodiclorometano	mg/l	*	*	*	*		<0,001	<0,001	<0,001	<0,001
- Dibromoclorometano	mg/l	*	*	*	*		<0,001	<0,001	<0,001	<0,001
- 1,2-Dibromoetano	mg/l	*	*	*	*		<0,001	<0,001	<0,001	<0,001
- Tribromometano (Bromoformio)	mg/l	*	*	*	*		<0,001	<0,001	<0,001	<0,001
Pesticidi fosforati	mg/l	*	*	*	*]	<0,01	<0,01	<0,01	<0,01
Pesticidi clorurati	mg/l	*	*	*	*]	<0,01	<0,01	<0,01	<0,01
Pesticidi totali (esclusi fosforati)	mg/l	*	*	*	*		<0,005	<0,005	<0,005	<0,005
Pesticidi totali (esclusi fosforati) tra cui:	mg/l	*	*	*	*		<0,005	<0,005	<0,005	<0,005

- Aldrin	mg/l	*	*	*	*		<0,0001	<0,0001	<0,0001	<0,0001
- Dieldrin	mg/l	*	*	*	*		<0,0001	<0,0001	<0,0001	<0,0001
- Endrin	mg/l	*	*	*	*		<0,0001	<0,0001	<0,0001	<0,0001
- Isodrin	mg/l	*	*	*	*		<0,0001	<0,0001	<0,0001	<0,0001
Conta di Batteri coliformi	UFC/100ml	*	*	*	*		7500	8000	570	1100
Conta di Enterococchi intestinali	UFC/100ml	*	*	*	*		160	190	<1	<1
Conta di Escherichia coli	UFC/100ml	*	*	*	*		1900	2500	<1	<1

^{*} i parametri non analizzati sono stati aggiunti o eliminati a seguito delle prescrizioni inserite nel decreto di compatibilità ambientale della Struttura Valutazione di Impatto Ambientale o a seguito di osservazioni contenute nei pareri tecnico-scientifico di Arpa.

Tabella 4 Esiti analitici campagna di monitoraggio del 24-06-2021

ella 4 Esiti analitici ca	inipagna ur i	Corso d'Opera				
Analyte	Units		•			
		C1	C2			
Torbidità	FTU	4,4	4,3			
Richiesta chimica di ossigeno (COD)	mg O2/I	13,1	18,3			
Carbonio organico totale (TOC)	mg/l	5,8	8,5			
Solidi Sospesi Totali	mg/l	2,00	6,0			
pH (in campo)		7,76	7,91			
Conducibilità elettrica specifica a 25°C (in campo)	μS/cm	791	779			
Temperatura (in campo)	°C	23,00	24,94			
Ossigeno disciolto (in campo)	mg/l	7,90	6,88			
Ossigeno disciolto (% saturazione) (in campo)	%	81,7	69,9			
Potenziale Redox (in campo)	mV	90	143			
Alluminio (Al)	μg/l	93	101			
Arsenico (As)	μg/l	2,64	2,58			
Cadmio (Cd)	μg/l	<0,30	<0,30			
Cromo (Cr)	μg/l	1,67	1,53			
Cromo esavalente (CrVI)	μg/l	<0,50	<0,50			
Ferro (Fe)	μg/l	101	119			
Manganese (Mn)	μg/l	14,2	28			
Mercurio (Hg)	μg/l	<0,10	<0,10			
Nichel (Ni)	μg/l	13,6	12,7			
Piombo (Pb)	μg/l	1,85	1,08			
Rame (Cu)	μg/l	6,3	6,2			
Zinco (Zn)	μg/l	136	87			
Cloruri	mg/l	114	113			
Nitrati	mg/l	7,2	6,1			
Nitriti	μg/l	310	300			
Solfati	mg/l	61,4	61,4			
Fosforo totale (come P2O5)	μg/l	1070	1250			
Azoto ammoniacale	mg/l	0,231	0,275			
Benzene	μg/l	<0,05	<0,05			
Etilbenzene	μg/l	<0,05	<0,05			
(m+p)-Xilene	μg/l	<0,04	0,29			
o-Xilene	μg/l	<0,05	0,23			
Stirene	μg/l	<0,05	<0,05			
Toluene	μg/l	<0,05	<0,05			
Clorometano	μg/l	<0,040	<0,040			
Cloroformio	μg/l	<0,015	<0,015			
Cloruro di vinile	μg/l	<0,050	<0,050			
1,2-Dicloroetano	μg/l	<0,030	<0,030			
1,1-Dicloroetilene	μg/l	<0,0050	<0,0050			
Tricloroetilene	μg/l	<0,030	<0,030			
Tetracloroetilene	µg/l	<0,050	<0,050			

Esaclorobutadiene	μg/l	<0,015	<0,015
1,1-Dicloroetano	μg/l	<0,04	<0,04
Cis-1,2- dicloroetilene	μg/l	<0,030	<0,030
Trans-1,2- dicloroetilene	μg/l	<0,050	<0,050
1,2-Dicloropropano	μg/l	<0,01	<0,01
1,1,2-Tricloroetano	μg/l	<0,02	<0,02
1,2,3- Tricloropropano	μg/l	<0,001	<0,001
1,1,2,2- Tetracloroetano	μg/l	<0,005	<0,005
Bromoformio	μg/l	<0,03	<0,03
Bromodiclorometano	μg/l	<0,017	<0,017
1,1,1,2- Tetracloroetano	μg/l	<0,05	<0,05
1,1,1-Tricloroetano	μg/l	<0,015	<0,015
1,1-Dicloropropene	μg/l	<1	<1
1,2-Dibromo-3- cloropropano	μg/l	<1	<1
1,3-Dicloropropano	μg/l	<1,0	<1,0
Bromoclorometano	μg/l	<0,04	<0,04
Cis-1,3- Dicloropropene	μg/l	<1,0	<1,0
Cloroetano	μg/l	<0,08	<0,08
Dibromometano	μg/l	<0,15	<0,15
Diclorometano	μg/l	<0,1	<0,1
Tetraclorometano	μg/l	<0,015	<0,015
Trans-1,3- Dicloropropene	μg/l	<1	<1
Aldrin	μg/l	<0,0030	<0,0030
Dieldrin	μg/l	<0,0030	<0,0030
Endrin	μg/l	<0,010	<0,010
Isodrin	μg/l	<0,010	<0,010
Sommatoria antiparassitari totali	μg/l	0,16	0,15
Idrocarburi Totali come n-esano (da calcolo)	μg/l	0	0
Tensioattivi totali (somma anionici, cationici, non ionici - da calcolo)	mg/l	0,390	0,400
Tensioattivi cationici	mg/l	0,390	0,400
Tensioattivi anionici	mg/l	<0,0500	<0,0500
Tensioattivi non ionici etossilati	mg/l	<0,0500	<0,0500
Conta Enterococchi intestinali	UFC/100ml	150	600
Conta Coliformi totali	UFC/100ml	130000	120000
Conta Escherichia coli	UFC/100ml	4000	4600
Richiesta biochimica di ossigeno (BOD5)	mg/l	4	4

Come si evince dai risultati riportati nella tabella precedente, durante la fase di corso d'opera non sono stati riscontrati dei significativi incrementi tra i parametri analizzati a monte del sito in oggetto, rispetto a quelli analizzati a valle, pertanto le lavorazioni che si stanno eseguendo nel sito in oggetto non stanno impattando negativamente sulle acque del Torrente Seveso.

5 RUMORE

5.1 FINALITÀ DEL MONITORAGGIO

Obiettivo del monitoraggio della componente rumore è la valutazione dell'eventuale diversità tra il livello di pressione o impatto registrato prima dell'inizio dei lavori – o comunque in una situazione preesistente e riconosciuta come fondo naturale (scenario di riferimento) – e l'analogo livello rilevato durante l'esecuzione dei lavori.

I dati relativi a ciascuna delle postazioni di monitoraggio sono stati raccolti ed elaborati.

5.2 PUNTI/STAZIONI DI CONTROLLO

In base alle disponibilità dei cittadini, sono stati individuati due punti di monitoraggio ubicati nei pressi degli edifici residenziali più prossimi al cantiere:

- durante le campagne di giugno e luglio 2021 le postazioni sono state:
 - Bresso Via Papa Giovanni XXIII 103/106 (perimetro condominio ex Aler) centralina 1;

o Bresso - Via Papa Giovanni XXIII 47 - centralina 2;

I monitoraggi in corso d'opera sono stati eseguiti nei periodi 18-20/12/2020, 10-12/1/2021, 5-7/2/2021, 14-16/3/2021, 18-20/04/2021, 23-25/05/2021, 20-22/06/2021 e 18-20/07/2021. Nella presente relazione sono riportati i risultati delle ultime due campagne di monitoraggio eseguite.

5.3 RISULTATI OTTENUTI

I report acustici sono redatti con frequenza mensile che coprano almeno 72h consecutive, comprensive della domenica così da consentire la stima del rumore residuo (cioè in assenza di attività di cantiere).

La centralina 1 è collocata in Classe II, la centralina 2 in Classe III, cioè con i limiti assoluti di emissione e immissione severi (la Classe acustica di maggior tutela è la I; la VI quella di minore tutela, propria delle aree esclusivamente industriali).

Il sistema di autorizzazione in deroga del Comune di Bresso consente, nella sua lettura più rigida, il superamento del valore assoluto di zona (immissione) per un'ora al giorno (diverso è il sistema di autorizzazione in deroga del Comune di Milano che, come altri Comuni italiani, fissa un valore limite di immissione in deroga di 75,0 dBA orari- in periodo di riferimento diurno).

Alla centralina 1, come nei monitoraggi precedenti sono presenti superamenti dei limiti assoluti di immissione notturni causati dalla rumorosità del fiume Seveso sia nella campagna di giugno che di di luglio 2021.

Per quanto riguarda il contributo delle attività di cantiere, per i giorni lavorativi 21 e 22 giugno è stato registrato un incremento di +7 dB rispetto al rumore residuo (rumore misurato di domenica 20 giugno), che tende a diminuire a partire dalle 17:00 ed è in pausa dalle ore 12:00 alle 13:00. Nella campagna di luglio 2021, giorno lunedì 19 luglio è stato registrato un incremento di +9 dB rispetto al rumore residuo (rumore misurato di domenica 18 luglio); giorno martedì 20 luglio invece, l'incremento è stato pari a +12 dB rispetto al rumore residuo (rumore misurato di domenica 18 luglio).

Alla centralina 2, sono presenti superamenti del limite di immissione per la classe di appartenenza durante le ore "di punta" (primo mattino), attribuibili al traffico stradale locale.

Confrontando i valori di LeqA orari misurati nei giorni lavorativi, sia nella campagna di giugno che di luglio, con quelli di domenica (rumore residuo), si osserva un incremento del contributo sonoro del traffico autoveicolare dalle ore 5:00 alle ore 9:00 del mattino; le altre variazioni giornaliere registrate dalla centralina non sembrano legate alle attività di cantiere. Infatti, per il monitoraggio di giugno 2021, i differenziali lun-dom e mart-dom (maggiori di 1 dBA) sono gli stessi fino alle 9:00 del mattino (questa fascia oraria è caratterizzata dalla rumorosità del traffico stradale) mentre nelle altre fasce orarie, sono risultati maggiori il lunedì o il martedì, senza possibili spiegazioni (il cantiere nelle due giornate ha avuto attività molto simili); tale contributo che comprende tutti i rumori, incluso il cantiere, è inferiore a 5dBA (limite differenziale di immissione in periodo diurno). Anche nella campagna di monitoraggio di luglio 2021, le variazioni giornaliere del contributo sonoro oltre la fascia oraria 5:00 – 9:00, non sono correlabili al cantiere (per esempio non si evidenzia la pausa pranzo) e la giornata di lunedì appare più rumorosa di quella di martedì che invece è stata caratterizzata da maggiore attività.

In allegato alla presente relazione vengono riportati con maggior dettaglio gli esiti delle campagne di monitoraggio eseguite in data 20-22/06/2021 e 18-20/07/2021.

6 ATMOSFERA – MONITORAGGIO IN CONTINUO

6.1 FINALITÀ DEL MONITORAGGIO

Il monitoraggio della componente atmosfera è finalizzato a controllare l'impatto delle attività di cantiere sulla qualità dell'aria presso i recettori presenti nell'intorno del sito, con particolare riferimento alle polveri sollevate durante le attività di scavo e di movimentazione di terra e materiali e alle emissioni dei mezzi pesanti.

6.2 TECNICHE DI MONITORAGGIO

In data 9/04/2021, in posizione adiacente ai campionatori gravimetrici, si è provveduto ad installare un analizzatore del tipo COMDE DERENDA APM-2 per la misura in continuo dei parametri PM10 e PM2.5. A partire dal 29/04, inoltre, lo strumento è stato dotato di modem per la trasmissione dei dati ad un portale dedicato, al fine di consentirne la consultazione in tempo reale. I dati rilevati sono stati confrontati con i valori limite fissati ai sensi del D.Lgs. 155/2010, ossia $50 \, \mu g/m^3$ (limite giornaliero) per la componente PM10 e col valore medio annuale in riferimento al parametro PM2.5.

6.3 PUNTI/STAZIONI DI CONTROLLO

La scelta dell'ubicazione della postazione di monitoraggio, di comune accordo con ARPA Lombardia, è ricaduta all'interno di un'area in gestione alla Protezione Civile, individuata al civico n. 97 di Via Papa Giovanni XXIII.

Il punto di misura, nonostante l'immediata vicinanza al confine del cantiere è risultato essere il giusto compromesso tra rappresentatività rispetto ai recettori e fattibilità tecnica (allaccio alla corrente elettrica, minimizzazione interferenze esterne, protezione della strumentazione).

L'esatta ubicazione del punto di monitoraggio è riportata nella figura seguente.

Figura 6-1 Area Protezione Civile

Figura 6-2 Campionatore continuo

La registrazione dei dati attraverso il campionatore continuo è attiva a partire dal giorno 9/04. I dati relativi sono stati confrontati con i valori limite fissati ai sensi del D.lgs. 155/2010, ossia 50 $\mu g/m^3$ (limite giornaliero) per la componente PM10, col valore medio annuale di 25 $\mu g/m^3$ in riferimento al parametro PM2.5.

6.4 RISULTATI OTTENUTI

In allegato alla presente relazione vengono riportati i dati validati registrati a partire dalla settimana del 14-20 giugno 2021 fino alla settimana del 19-25 luglio 2021.

Nel periodo di riferimento, come si osserva nel grafico di seguito, non sono stati rilevati superamenti del limite legislativo giornaliero pari a $50~\mu g/m^3$ per il parametro PM10.

Per il PM2.5, considerando che il valore medio del parametro nel periodo di monitoraggio considerato (14/06/2021 – 25/07/2021) risulta pari a 8.39 μ g/m³ è possibile affermare che le attività di cantiere non hanno generato emissioni di polvere oltre il limite normativo annuale di 25 μ g/m³.

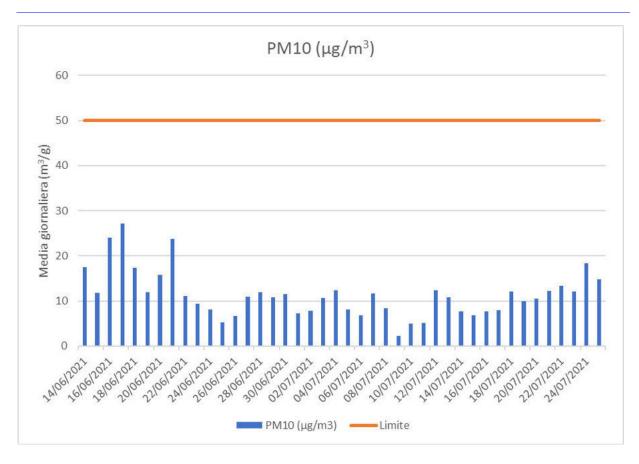


Figura 6-3 medie giornaliere PM10 14/06/2021 - 25/07/2021

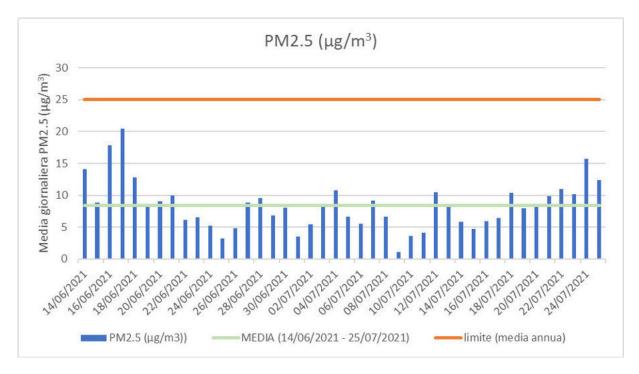


Figura 6-4 medie giornaliere PM2.5 14/06/2021 - 25/07/2021

Nel periodo di riferimento (14/06/2021 – 25/07/2021) in cantiere sono state svolte le seguenti lavorazioni:

- Giugno 2021:
 - o Realizzazione opere in cemento armato manufatto di scarico, muri C e B;
 - Movimenti terra fondo vasca;
 - Realizzazione platea fondo vasca in cemento fibrorinforzato;
 - o Realizzazione manufatto opera di presa.
- Luglio 2021:
 - Movimenti terra fondo vasca;
 - o Realizzazione platea fondo vasca in cemento fibrorinforzato;
 - o Risagomatura e scogliera sponde vasca;
 - o Realizzazione manufatto opera di presa.

In particolare, le lavorazioni che hanno interessato più da vicino il punto di ubicazione della stazione di monitoraggio sono la realizzazione delle opere in cemento armato, del manufatto di scarico e dei muri C e B e la realizzazione del manufatto opera di presa.

Per mitigare ed abbattere le emissioni polverose durante le lavorazioni, si è provveduto ad eseguire bagnature in cantiere tramite l'utilizzo di un impianto fisso.

In allegato alla presente relazione si riportano le planimetrie con l'ubicazione delle lavorazioni sopra elencate e i registri delle bagnature relativi ai mesi di giugno e luglio 2021.

7 ALLEGATO 1 – AVIFAUNA 11/06/2021

CITTÀ METROPOLITANA DI MILANO

COMUNE DI MILANO

MM S.p.a.

Oggetto

Monitoraggio della componente ambientale biodiversità, relativo alla vasca di laminazione del Seveso

Titolo elaborato	Numero elaborato
Monitoraggio avifauna – giugno 2021	A.5

Studio Agrario

Dott. Cuk Dalibor Dott.ssa Bugnone Roberta

P.IVA 10309430014

P.IVA 11711450012

Sede legale: BUSSOLENO (TO) - 10053 via Sant'Albano, 19

Ufficio: CONDOVE (TO) - 10055 Via Torino, 13/F

Cell. 3336720674 E-mail: delibeus@yahoo.it

Sito internet: sites.google.com/site/stagrario

Rev.	Descrizione	Data
1	R_196_Avifauna_5.00.doc	21/06/2021

Richiedente

INDICE

1	PREMESSA	3
2	CONTESTUALIZZAZIONE DEI MONITORAGGI	4
3	MATERIALI E METODI	6
4	RIEPILOGO DEI RISULTATI	9
4	4.1 Confronti con le osservazioni precedenti	11
5	DOCUMENTAZIONE FOTOGRAFICA	15

1 PREMESSA

A seguito dalla necessità della società MM S.p.a. di realizzare una vasca di laminazione del Torrente Seveso, nel territorio del Comune di Milano ricadente all'interno del Parco Nord, è stato conferito l'incarico (CONTRATTO N° 2400000179 – CIG 8463958718) al sottoscritto Dott. Agr. Dalibor Cuk, iscritto all'Ordine dei Dottori Agronomi e Forestali della provincia di Torino con il n° 902 per il monitoraggio della biodiversità. In particolare in questa relazione vengono descritti i risultati del monitoraggio dell'avifauna, redatto sulla base dei contenuti indicati al Capitolo 8 del Piano di Monitoraggio Ambientale (Rev. 15 di agosto 2020).

Nella presente relazione vengono descritti i dati del quinto monitoraggio dell'avifauna in corso d'opera. Il monitoraggio è stato eseguito in data 11 giugno 2021, durante le ultime fasi di scavo della vasca di laminazione.

2 CONTESTUALIZZAZIONE DEI MONITORAGGI

Al fine di valutare i risultati ottenuti nella presente campagna di monitoraggi, rispetto alla situazione ante-operam, sono stati analizzati i dati rilevati nel periodo 2009-2011, all'interno dell'*Atlante della biodiversità nelle aree protette del Nord Milanese (Casale et. al 2014)*, nel periodo 2018-2020 sul portale Inaturalist.org e nel periodo 2020-2021 sul portale ornitho.it. Non essendo attuabile un adeguato confronto in termini quantitativi, in quanto i transetti utilizzati nei diversi studi presentano dimensioni variabili, in tabella 2.1 si riportano le specie individuate.

Tabella 2.1 – Riepilogo delle specie rilevate nella decade centrale di giugno

	Ornitho	Inaturalist	Atlante
Accipiter nisus			X
Aegithalos caudatus	X		X
Acrocephalus scirpaceus		X	
Anas platyrhynchos	X	X	
Apus apus	X	X	X
Ardea cinerea	X	X	
Carduelis carduelis			X
Columba palumbus	X	X	X
Corvus cornix	X		X
Cygnus olor	X	X	
Delichon urbicum			X
Dendrocopos major	X		X
Falco tinnunculus	X		
Fringilla coelebs	X	X	Х
Fulica atra	X	X	
Gallinula chloropus	X	X	
Hippolais polyglotta			Х
Hirundo rustica	X		Х
Ixobrychus minutus	X	X	
Lanius collurio			Х
Luscinia megarhynchos	X		
Motacilla alba			Х
Muscicapa striata			Х
Parus major	X		Х
Passer domesticus italiae			Х
Passer montanus			Х
Phoenicurus phoenicurus	Х		Х
Pica pica	X		
Picus viridis	X		
Psittacula krameri	X		
Serinus serinus	X		х
Streptopelia decaocto			X
Sturnus vulgaris	X		X
Sylvia atricapilla	X		X
Turdus merula	X		X

Nella tabella 2.2 vengono riportati i dati osservati nel 2009 da Casale et al., 2014, da cui si evince che le specie dominanti risultano costituite da *Sturnus vulgaris* e *Tordus merula*. In due transetti inoltre, è stata rilevata la presenza di *Lanius collurio*.

Tabella 2.2 – Riepilogo delle osservazioni nel mese di maggio 2009 (Casale et. al 2014)

C	Transetto							
Specie	A1	A2	A3	A4	A5	A6	A7	
Accipiter nisus		1						
Aegithalos caudatus	1	1						
Apus apus			1	4			2	
Carduelis carduelis		2	2		3		2	
Carduelis chloris			1		3			
Columba palumbus		3			3		2	
Corvus cornix	2	2	3	1	3	4	2	
Delichon urbicum		2	11				7	
Dendrocopos major			1	1	1	1	1	
Fringilla coelebs	1	3		1	1	2		
Hippolais polyglotta		1	1	1	1			
Hirundo rustica	9	5	1		1	8		
Lanius collurio			1	1				
Motacilla alba						1		
Muscicapa striata	2							
Parus major	3	2	1	3	6	1	3	
Passer domesticus italiae	6	7		1	2	2		
Passer montanus					7	1		
Phoenicurus phoenicurus	2					2		
Serinus serinus	3			1	3		2	
Streptopelia decaocto	1						2	
Sturnus vulgaris	3	10	11	16	21	7	8	
Sylvia atricapilla	2	4			1	1	1	
Turdus merula	11	2	1	3	5	9	4	

3 MATERIALI E METODI

Lo studio dell'avifauna, si basa su metodologie diverse e complementari che hanno richiesto l'applicazione di protocolli standard di censimento (Bibby et al. 2000; Sutherland, 2006) tramite l'applicazione di transetti lineari.

Il censimento lungo transetti si basa sull'osservazione e sul conteggio degli individui presenti in una fascia di 100 m intorno ad un percorso più o meno lineare, lungo cui si muove l'osservatore, che riporta su mappe di dettaglio e schede apposite i risultati delle proprie osservazioni. Nel caso specifico, l'indagine è stata eseguita da due osservatori che percorrendo simultaneamente il transetto registrano gli esemplari individuati al lato desto o sinistro. Le osservazioni sono iniziate all'alba e sono state concluse entro le ore 11.00.

Nel dettaglio i rilievi sono stati effettuati impiegando la scheda di monitoraggio rappresentata in figura 3.1, in cui sono stati rilevati i seguenti dati:

- **Dati generali:** codice transetto, rilevatore, data del rilievo, entità del disturbo antropico, ora inizio rilievo, ora fine rilievo;
- Dati specifici: per ciascuna specie individuata, viene riportato:
 - ➤ il numero di individui conteggiati tramite rilievo diretto degli esemplari avvistati, il conteggio degli esemplari al canto (ossia esemplari per cui non è

Specie

Corvus cornix

- stato eseguito un avvistamento diretto), e l'individuazione di segni indiretti che rappresentano la presenza della specie (es. nidi);
- la fenologia della specie (S: stanziale; M: migratorio; W: svernante; N: nidificante);
- l'identificazione GPS dei segni indiretti;
- l'identificazione delle foto effettuate.

Figura 3.1 – Scheda di monitoraggio avifauna

SCHEDA MONITORAGGIO AVIFAUNA

- **Note:** eventuali peculiarità rilevate.

Come rappresentato nell'allegato 1 sono stati individuati 7 transetti di 400 metri di lunghezza l'uno, utilizzando i transetti già impiegati per lo studio redatto da Casale et. al 2014, più prossimi al sito di indagine. La localizzazione in campo dei transetti è avvenuta tramite l'impiego del GPS Garmin GPSmap 62sc.

Nel dettaglio di seguito si riporta la descrizione di ciascun transetto:

- A1: risulta localizzato a nord del Cimitero di Bruzzano, in un'area in parte prativa in parte boscata. Il disturbo antropico risulta modesto, in quanto risulta altamente frequentato dai fruitori del parco.
- A2: risulta localizzato ad est del Lago di Bruzzano. La parte nord risulta inserita all'interno del bosco, la parte centrale risulta in adiacenza del Lago di Bruzzano, mentre la parte sud presenta un viale alberato e prato. Il disturbo antropico risulta modesto, in quanto risulta altamente frequentato dai fruitori del parco.
- A3: risulta localizzato in prossimità di Via dei Finanzieri d'Italia e Via del Regno Italico. La parte centrale risulta costituita da bosco, mentre le parti laterali sono costituite da prato. Il disturbo antropico risulta modesto, in quanto risulta altamente frequentato dai fruitori del parco.
- A4: risulta localizzato a nord del Lago di Niguarda. Il transetto risulta situato all'interno del viale alberato con i margini costituiti da bosco e prato. Il disturbo antropico risulta modesto, in quanto risulta altamente frequentato dai fruitori del parco.
- A5: risulta localizzato ad est di Via Giuditta Pasta e a sud del Lago di Niguarda. Il transetto risulta situato per gran parte all'interno del prato. I margini sono costituiti da bosco e lago. Il disturbo antropico risulta modesto, in quanto risulta altamente frequentato dai fruitori del parco.
- A6: risulta localizzato a sud di Via Alessandro Bisnati ed è situato per gran parte all'interno del prato. I margini sono costituiti da bosco. Il disturbo antropico risulta modesto, in quanto risulta altamente frequentato dai fruitori del parco.
- A7: risulta localizzato ad ovest di Via Carlo Moreschi ed è situato per gran parte all'interno del prato. I margini sono costituiti da bosco. Il disturbo antropico risulta elevato, a causa dell'intenso traffico automobilistico nel vicino Viale Enrico Fermi.

L'identificazione delle specie è avvenuta, consultando le principali guide (Lars, 2011, Casale et. al 2014, Bricchetti et al, 1990).

Al fine di valutare l'effetto dei lavori in corso d'opera sulla componente avifauna, e considerando che le caratteristiche ecologiche dei diversi siti di rilievo risultano variegate,

i risultati dei transetti sono stati standardizzati sulla base del numero di specie presenti, sulla base dell'habitat colonizzato e sul numero di individui rilevati.

Al fine di definire la diversità biologica di ciascun transetto, è stato calcolato l'indice di Shannon secondo la seguente formula:

$$H' = -\sum [ni/N * ln(ni/N)]$$

Dove

ni= n° di individui di ogni iesima specie

N= n° totale di individui di una taxocenosi

Al fine di individuare delle differenze significative tra i risultati dei transetti è stata condotta l'analisi della varianza ANOVA ad una via, considerando i singoli monitoraggi come repliche, utilizzando un livello di significatività (alfa = 0,05). Nel caso in cui i risultati dell'analisi della varianza ad una via sono significativi, ovvero F maggiore dell'F critico, e quindi le medie dei livelli dei transetti non sono tra loro tutte uguali, è stato effettuato il test post hoc di Tukey, che consente di confrontare le differenze tra i diversi transetti.

4 RIEPILOGO DEI RISULTATI

Nel quinto monitoraggio eseguito, come si osserva nella tabella 4.1, le specie prevalenti risultano costituite dal Merlo (*Turdus merula*), dal Fringuello (*Fringilla coelebs*) e dal Codibugnolo (*Aegithalos caudatus*). Si segnala la presenza di una specie alloctona, il Parrocchetto dal collare (*Psittacula krameri*).

La gran parte delle specie individuate sono costituite da specie sedentarie e, come il monitoraggio precedente, sono state osservate alcune specie migratorie quali la Rondine (*Hirundo rustica*), Codirosso (*Phoenicurus phoenicurus*) e Luì verde (*Phylloscopus sibilatrix*).

Confrontando i risultati, rispetto ai dati descritti nel capitolo 2, si osserva che le specie individuate risultano comparabili. Si evidenzia che, a differenza dei dati bibliografici, non sono stati rilevati i rapaci Falco pecchiaiolo (*Pernis apivorus*), Gheppio (*Falco tinnunculus*) e alcuni Hirundinidaee come il Balestruccio (*Delichon urbicum*).

Per quanto riguarda i risultati ottenuti nei diversi transetti, si osserva che, sono stati osservati mediamente 60 esemplari ed il coefficiente di variazione risulta di 0,19. Questo dato indica che la variazione dalla media risulta mediocre. Infatti, come si osserva nella tabella 4.1, il numero di individui osservati varia da 47 per il transetto A6 a 79 per il transetto A5. Il numero di esemplari osservati, però non incide sulla diversità biologica, che risulta buona in tutti i rilievi, con un range che varia da 1,97 per il transetto A2 a 2,48 per il transetto A5.

Per quanto riguarda gli habitat colonizzati dalle specie rilevate, le specie legate ad un ambiente acquatico sono state rilevate prevalentemente nei transetti A2 e A5, confermando quanto rilevato nei monitoraggi precedenti. Come osservato nel monitoraggio precedente, le specie legate agli ambienti boscati, in diversi transetti, prevalgono sulle specie ubiquitarie. Le specie legate ad un ambiente prativo risultano maggiormente rappresentate nel transetto A3.

I transetti più vicini all'area oggetto dei lavori di scavo, sono rappresentati dai transetti A1, A3 e A4. In questi transetti il numero di specie ed il numero di individui risultano nella media. Tale dato indica che, gli effetti del cantiere sull'avifauna risultano estremamente limitati.

Tabella 4.1 – Riepilogo dei dati di monitoraggio

G .			7	ransetto)		
Specie	A1	A2	A3	A4	A5	A6	A7
Aegithalos caudatus	8		1	5	1	5	21
Anas platyrhynchos		11			15		
Apus apus		3			5		5
Ardea cinerea					2		
Carduelis chloris			1	1	1		
Columba livia var. domestica	3		11	1		1	
Columba palumbus	2	1	4	1		1	1
Corvus cornix	5	4		5	3	4	9
Cygnus olor					1		
Erithacus rubecula						1	
Fringilla coelebs	7	4	11	8	6	8	8
Fulica atra					10		
Gallinula chloropus		8			7		
Hirundo rustica	5	6	2	3	3	3	4
Ixobrychus minutus					1		
Lanius collurio							1
Parus major	8	12		6		2	0
Passer domesticus italiae							1
Phoenicurus ochruros			1			1	2
Phoenicurus phoenicurus	4	1	1	1	4	1	3
Phylloscopus collybita					1		
Phylloscopus sibilatrix			1	1			
Psittacula krameri	3	1	4	2	10	2	8
Streptopelia decaocto							1
Sturnus vulgaris			15				
Sylvia atricapilla			1	1	1	9	3
Turdus merula	9	12	5	10	8	9	5
Totale individui	54	63	58	51	79	47	72
Indice di Shannon	2,206	1,970	2,097	2,325	2,480	2,154	2,241
Numero di specie	10	11	13	14	17	13	14

A7 **A6** A5 A4 **A**3 A2 A1 50 0 10 20 30 70 40 80 90 ■ Acquatico ■ Boscato ■ Prativo **■** Urbano Boscato - Prativo

Figura 4.1 – Individui censiti in funzione del loro habitat principale

4.1 CONFRONTI CON LE OSSERVAZIONI PRECEDENTI

Come si osserva dalla tabella 4.3, nei cinque monitoraggi eseguiti si possono osservare delle lievi differenze. Il numero totale di individui osservati risulta similare nei primi tre monitoraggi, mentre negli ultimi due sono stati registrati più esemplari. Il numero di specie osservate e l'indice di Shannon tende ad aumentare nei diversi monitoraggi, con un leggero decremento nel quarto monitoraggio.

Dall'analisi dei dati emerge che in generale prevalgono le specie ubiquitarie, mentre le specie legate all'ambiente prativo risultano spesso poco presenti. Nel primo monitoraggio la specie prevalente risulta costituita da *Corvus cornix* mentre nei successivi prevale *Tordus merula*.

Nei due transetti caratterizzati dalla presenza di ambienti acquatici (A2 e A5), la specie prevalente risulta *Gallinula chloropus*, anche se in alcuni casi prevalgono *Sturnus vulgaris* e *Tordus merula*.

Dall'analisi della varianza relativa ai risultati, come già evidenziato nel quarto mnitoraggio, si evince che non esistono delle differenze significative tra i diversi transetti (tabella 4.2). Tale risultato conferma quindi anche da un punto di vista statistico il lieve impatto del cantiere sull'attività dell'avifauna.

Tabella 4.2 – Analisi della varianza ANOVA

RIEPILOGO

Gruppi	Conteggio	Somma	Media	Varianza
A1	5	232	46,4	90,8
A2	5	315	63	192,5
A3	5	234	46,8	302,7
A4	5	225	45	201,5
A5	5	258	51,6	414,8
A6	5	246	49,2	140,2
A7	5	232	46,4	349,3

ANALISI VA	RIANZA					
Origine della					Valore di	_
variazione	SQ	gdl	MQ	F	significatività	F crit
Tra gruppi	1164,971429	6	194,1619048	0,803365252	0,575740995	2,445259395
In gruppi	6767,2	28	241,6857143			
Totale	7932,171429	34				

Tabella 4.3 – Riepilogo delle osservazioni dell'avifauna

				Codice tra	ansetto			
	A1	A2	A3	A4	A5	A6	A7	ТОТ
Monitoraggio del 2	29/03/2021							
Totale individui	33	71	33	32	43	54	28	294
Indice di Shannon	1,61	1,66	1,77	1,80	2,00	1,76	1,75	2,30
Numero di specie	7	9	8	8	11	8	9	19
Specie prevalente	Corvus cornix	Gallinula chloropus	Corvus cornix	Columba livia var. domestica	Gallinula chloropus	Sturnus vulgaris	Corvus cornix	Corvus cornix
Habitat	Boscato - Prativo	Acquatico	Boscato - Prativo	Boscato - Prativo	Boscato - Prativo	Boscato - Prativo	Boscato - Prativo	Boscato - Prativo
Indice di Shannon	2,17	1,96	2,01	2,03	2,04	2,18	1,68	2,69
Monitoraggio del 1	15/04/2021							
Totale individui	45	42	28	36	32	41	37	261
	<u> </u>		·	,				
Numero di specie	13	9	10	10	12	10	7 Columba livia var.	22
Specie prevalente	Fringilla coelebs	Gallinula chloropus	Corvus cornix	Turdus merula	Gallinula chloropus	Turdus merula	domestica	T 1 1
		Gaithaia Chioropus	COTVIIS COTTIES	1 000 00000 00000	Ganna Chioropus		aomesica	Turdus merula
Habitat	Boscato	Acquatico	Boscato - Prativo	Boscato - Prativo	Acquatico	Boscato	Boscato	
Habitat Monitoraggio del (Boscato	•						Boscato - Prativo
	Boscato	•						
Monitoraggio del (Boscato 07/05/2021	Acquatico	Boscato - Prativo	Boscato - Prativo	Acquatico	Boscato	Boscato	Boscato - Prativo
Monitoraggio del (Boscato 07/05/2021	Acquatico 60 2,47	Boscato - Prativo	Boscato - Prativo	Acquatico 37	Boscato 37	Boscato 35	Boscato - Prativo
Monitoraggio del (Totale individui Indice di Shannon	Boscato 07/05/2021 43 2,29	Acquatico 60 2,47	Boscato - Prativo 45 2,25	Boscato - Prativo 39 2,26	Acquatico 37 2,16	37 2,13	35 2,07	Boscato - Prativo

Monitoraggio del 2	28/05/2021							
Totale individui	57	79	70	67	67	67	60	467
Indice di Shannon	2,37	2,13	2,18	2,00	2,38	2,08	2,09	2,38
Numero di specie	14	12	13	13	15	11	11	26
Specie prevalente	Parus major	Anas platyrhynchos	Aegithalos caudatus	Aegithalos caudatus	Gallinula chloropus	Turdus merula	Parus major	Turdus merula
Habitat	Boscato - Prativo	Acquatico	Boscato	Boscato	Acquatico	Boscato - Prativo	Boscato - Prativo	Boscato - Prativo
Monitoraggio del 1	11/06/2021							
Totale individui	54	63	58	51	79	47	72	424
Indice di Shannon	2,21	1,97	2,10	2,33	2,48	2,15	2,24	2,79
Numero di specie	10	11	13	14	17	13	14	27
Specie prevalente	Turdus merula	Turdus merula	Sturnus vulgaris	Turdus merula	Anas platyrhynchos	Turdus merula	Aegithalos caudatus	Turdus merula
Habitat prevalente	Boscato - Prativo	Boscato - Prativo	Boscato	Boscato	Acquatico	Boscato	Boscato	Boscato - Prativo

5 DOCUMENTAZIONE FOTOGRAFICA

Figura 5.1 - Ixobrychus minutus

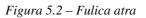


Figura 5.3 - Phoenicurus phoenicurus

Figura 5.4 - Erithacus rubecula

Figura 5.5 – Aegithalos caudatus

Figura 5.6 - Sylvia atricapilla

Figura 5.7 – Parus major

Figura 5.8 – Apus apus

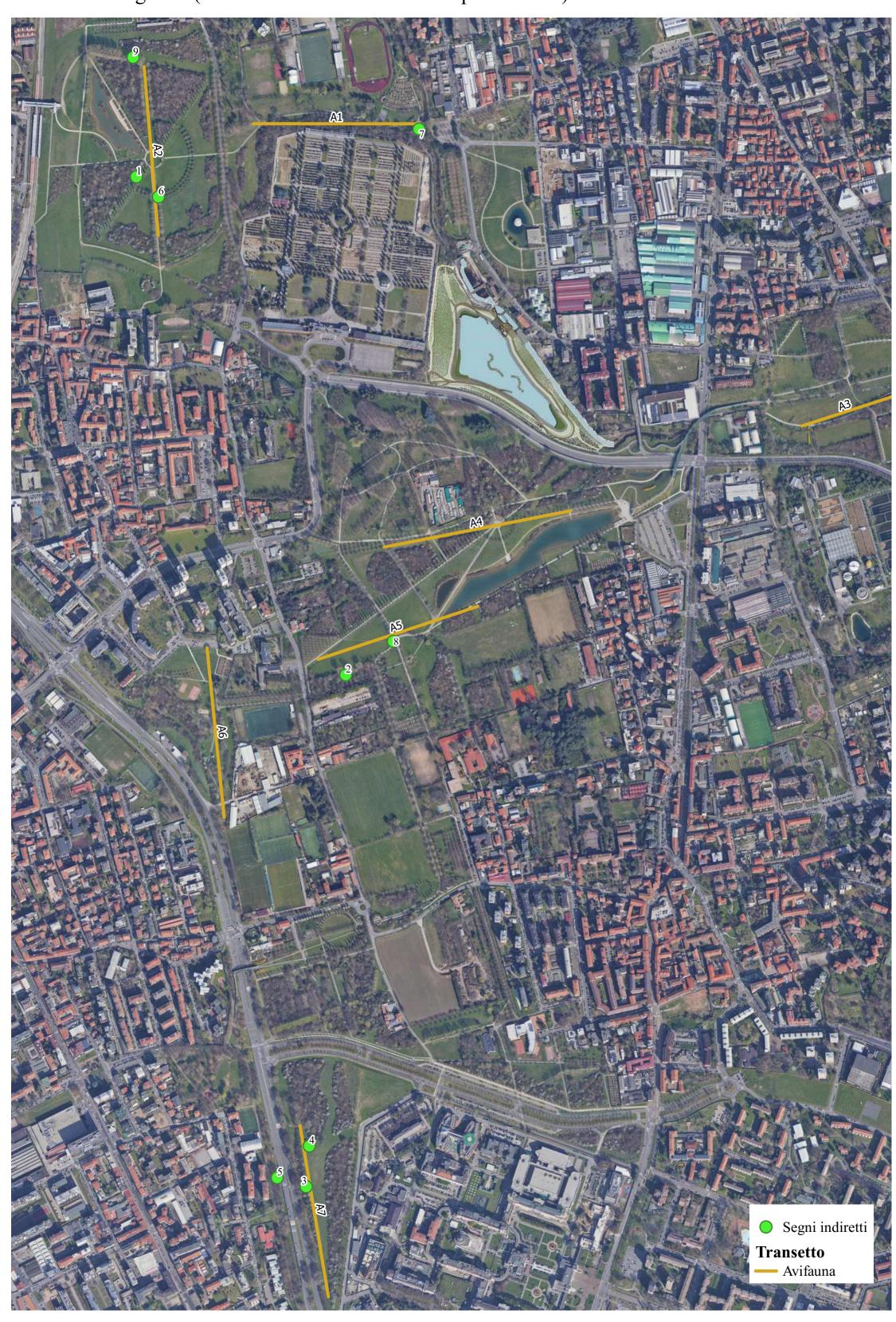
BIBLIOGRAFIA

Bibby C.J., Burgess N.D., Hill D.A. & Mustoe S.H., 2000. Bird Census Techniques (second edition). Academic Press.

Brichetti P., Fasola M., 1990. Atlante degli Uccelli nidificanti in Lombardia. Editoriale Ramperto.

Casale F., Bergero V., Brambilla M., Campana F., Decarli M.L., Falco R., Gini R., Redondi A., Siliprandi M., Tucci M., Crovetto M., Bogliani G., 2014. Atlante della biodiversità nelle aree protette del Nord Milanese. Parco Nord Milano, 2014.

Harrison C., 1988. Nidi, uova e nidiacei degli uccelli d'Europa. Franco Muzzio Editore.


Lars S., 2011. Guida degli uccelli d'Europa, Nord Africa e Vicino Oriente. Ricca Editore.

Sutherland W. J., 2006; Ecological Census Techniques. Cambdridg University Press.

ALLEGATI

All. 1 – Localizzazione dei siti di campionamento All. 2 – Scheda di campo

Allegato 1 (Localizzazione del sito di campionamento) - scala 1:10.000

Codice transetto	A1	Rilevatore	Cuk-Bugnone	Data	11/06/2021
Disturbo antropico	medio	Ora inizio	8.55	Ora fine	9.10

Specie	A vista	Al canto	Indiretti	Fenologia	GPS	Foto
Aegithalos caudatus		8		S		
Columba livia var. domestica	3			S		
Columba palumbus		2		S		
Corvus cornix	5			S		
Fringilla coelebs		7		S		
Hirundo rustica	5			M		
Parus major		8		S		
Phoenicurus phoenicurus		4		M		
Psittacula krameri		3		S		
Turdus merula	5	4		S	7	

Note:			

Codice transetto	A2	Rilevatore Cu	uk-Bugnone	Data	11/06/2021
Disturbo antropico	medio	Ora inizio 9.1	15	Ora fine	9.40

Specie	A vista	Al canto	Indiretti	Fenologia	GPS	Foto
Anas platyrhynchos	11			S		
Apus apus	3			M		5.8
Columba palumbus		1		S		
Corvus cornix	3	1		S	1, 9	
Fringilla coelebs		4		S		
Gallinula chloropus	7	1		S		
Hirundo rustica	6			M		
Parus major	8	4		S		5.7
Phoenicurus phoenicurus		1		M	6	
Psittacula krameri	1			S		
Turdus merula	10	2		S		

Note:			

Codice transetto	A3	Rilevatore	Cuk-Bugnone	Data	11/06/2021
Disturbo antropico	medio	Ora inizio	8.10	Ora fine	8.30

Specie	A vista	Al canto	Indiretti	Fenologia	GPS	Foto
Aegithalos caudatus	1			S		
Carduelis chloris		1		S		
Columba livia var. domestica	11			S		
Columba palumbus	1	3		S		
Fringilla coelebs		11		S		
Hirundo rustica	2			M		
Phoenicurus ochruros		1		S		
Phoenicurus phoenicurus	1			M		5.3
Phylloscopus sibilatrix		1		M		
Psittacula krameri	2	2		S		
Sturnus vulgaris	15			S		
Sylvia atricapilla		1		M, W		
Turdus merula	3	2		S		

Note:				

Codice transetto	A4	Rilevatore	Cuk-Bugnone	Data	11/06/2021
Disturbo antropico	medio	Ora inizio	7.00	Ora fine	7.20

Specie	A vista	Al canto	Indiretti	Fenologia	GPS	Foto
Aegithalos caudatus		5		S		
Carduelis chloris		1		S		
Columba livia var. domestica	1			S		
Columba palumbus	1			S		
Corvus cornix	5			S		
Fringilla coelebs		8		S		
Hirundo rustica	3			M		
Parus major		6		S		
Phoenicurus phoenicurus		1		M		
Phylloscopus sibilatrix		1		M		
Psittacula krameri		2		S		
Sturnus vulgaris	6			S		
Sylvia atricapilla		1		M, W		
Turdus merula	6	4		S		

Note:			

Codice transetto	A5	Rilevatore	Cuk-Bugnone	Data	11/06/2021
Disturbo antropico	medio	Ora inizio	6.30	Ora fine	6.50

Specie	A vista	Al canto	Indiretti	Fenologia	GPS	Foto
Aegithalos caudatus		1		S		
Anas platyrhynchos	15			S		
Apus apus	5			M		
Ardea cinerea	2			W		
Carduelis chloris		1		S		
Corvus cornix	1	2		S		
Cygnus olor	1			S		
Dendrocopos major				S	2	
Fringilla coelebs		6		S		
Fulica atra	10			S		5.2
Gallinula chloropus	7			S		
Hirundo rustica	3			M		
Ixobrychus minutus	1			M		5.1
Parus major				S	8	
Phoenicurus phoenicurus		4		M		
Phylloscopus collybita		1		M		
Psittacula krameri	10			S		
Sylvia atricapilla		1		M, W		
Turdus merula	3	5		S		

Note:			

Codice transetto	A6	Rilevatore	Cuk-Bugnone	Data	11/06/2021
Disturbo antropico	medio	Ora inizio	7.30	Ora fine	7.50

Specie	A vista	Al canto	Indiretti	Fenologia	GPS	Foto
Aegithalos caudatus		5		S		
Columba livia var. domestica	1			S		
Columba palumbus		1		S		
Corvus cornix	1	3		S		
Erithacus rubecula	1			W		5.4
Fringilla coelebs		8		S		
Hirundo rustica		3		M		
Parus major		2		S		
Phoenicurus ochruros		1		S		
Phoenicurus phoenicurus		1		M		
Psittacula krameri	2			S		
Sylvia atricapilla	5	4		M, W		5.6
Turdus merula	4	5		S		
Turdus philomelos				M		

Note:			

Codice transetto	A7	Rilevatore	Cuk-Bugnone	Data	11/06/2021
Disturbo antropico	medio	Ora inizio	6.00	Ora fine	6.20

Specie	A vista	Al canto	Indiretti	Fenologia	GPS	Foto
Aegithalos caudatus	18	3		S	3	5.5
Apus apus	5			M		
Columba palumbus	1			S		
Corvus cornix	5	4		S	4,5	
Fringilla coelebs		8		S		
Hirundo rustica	2	2		M		
Lanius collurio		1		M		
Passer domesticus italiae		1		S		
Phoenicurus ochruros		2		S		
Phoenicurus phoenicurus	2	1		M		
Psittacula krameri	8			S		
Streptopelia decaocto		1		S		
Sylvia atricapilla		3		M, W		
Turdus merula	2	3		S		

Note:			

8 ALLEGATO 2 – ACQUE SOTTERRANEE 24/06/2021

Via Retrone 29/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

MM S.p.a. Via del Vecchio Politecnico, 8 20121 MILANO (MI)

> Data 26.07.2021 Cod. cliente 11374

RAPPORTO DI PROVA 219225 - 634772

Ordine 219225 CONTRATTO N° 2400000234 - CIG 86768299CC - Commessa:

CT-SEVESO / 5310

N. campione 634772 Acqua
Ricevimento campione 25.06.2021
Data Campionamento 24.06.2021 11:12

Campionato da: AGROLAB Italia S.r.I. Walter Hellweger

Descrizione del campione fornita dal PZ01

cliente:

<u>0</u>

Solamente

17025:2018.

ISO/IEC

CEI

prove riportate in questo documento sono accreditate secondo

accreditate sono contrassegnate con il simbolo " *) ".

Verbale e metodo di Campionamento: ACQ21/1586/1

Luogo di campionamento Cimitero Bruzzano Parco nord - Piezometro

Valori limite

U.M. Risultato Incertezza (L) LOQ Metodo

Carbonio organico totale (TOC) 0.5 UNI EN 1484:1999 mg/l <0,50 Parametri in campo Concentrazione ioni idrogeno (in campo) 6,85 +/- 0,43 APAT CNR IRSA 2060 Man 29 2003 Conducibilità elettrica specifica a 25°C (in APAT CNR IRSA 2030 Man 29 μS/cm 734 +/- 55 2003 campo) APAT CNR IRSA 2100 Man 29 °C 17,01 +/- 0,22 Temperatura (in campo) 2003 +/- 0,42 Ossigeno disciolto (in campo) 6,98 0,05 UNI EN ISO 5814:2013 mg/l Ossigeno disciolto (% saturazione) (in campo) +/- 4,2 UNI EN ISO 5814:2013 % 70,2 0.6 +/- 11 Potenziale Redox (in campo) m۷ 92 UNI 10370:2010 Livello Freatimetrico m 18,09 MIP-740 2018 Rev 1.1 Metalli μg/l EPA 6020B 2014 Alluminio (Al) <10.0 200 10 EDA 6020B 2014 Antimonia (Sh) 0.5

3	Antimonio (Sb)	μg/I	<0,50		5	0,5	EPA 6020B 2014
5	Argento (Ag)	μg/l	<0,50		10	0,5	EPA 6020B 2014
Ś	Arsenico (As)	μg/l	<1,00		10	1	EPA 6020B 2014
Ś	Berillio (Be)	μg/l	<0,40		4	0,4	EPA 6020B 2014
Ś	Cadmio (Cd)	μg/l	<0,30		5	0,3	EPA 6020B 2014
,	Cobalto (Co)	μg/l	<0,50		50	0,5	EPA 6020B 2014
5	Cromo (Cr)	μg/l	3,0	+/- 1,0	50	1	EPA 6020B 2014
5	Cromo esavalente (CrVI)	μg/l	2,39	+/- 0,80	5	0,5	EPA 7199 1996
2	Ferro (Fe)	μg/l	<20,0		200	20	EPA 6010D 2018
2	Manganese (Mn)	μg/l	<0,50		50	0,5	EPA 6020B 2014
3	Mercurio (Hg)	μg/l	<0,10		1	0,1	EPA 6020B 2014
5	Nichel (Ni)	μg/l	2,04	+/- 0,72	20	1	EPA 6020B 2014
=	Piombo (Pb)	μg/l	<0,50		10	0,5	EPA 6020B 2014
3	Rame (Cu)	μg/l	<1,00		1000	1	EPA 6020B 2014
3	Selenio (Se)	μg/l	<1,00		10	1	EPA 6020B 2014
)	Tallio (TI)	μg/l	<0,20		2	0,2	EPA 6020B 2014
2	Zinco (Zn)	μg/l	<10		3000	10	EPA 6020B 2014

ACCREDIA 5

pagina 1 di 4

Via Retrone 29/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

Your labs. Your service.

Data	26.07.2021
Cod. cliente	11374

RΔ	PPOR'	IO DI	PROVA	219225 -	634772
, ,,,,		. • • •		Z 13223 -	UUTIIL

	U.M. Risultato I	ncertezza (L)	LOQ	Metodo
Anioni				
Cloruri	mg/l 53	+/- 11	0,1	APAT CNR IRSA 4020 Man 29 2003
Nitrati	mg/l 38	+/- 11	0,1	APAT CNR IRSA 4020 Man 29 2003
Nitriti	μg/l <30,0	500	30	EPA 354.1 1971
Solfati	mg/l 53	+/- 11 250	0,1	APAT CNR IRSA 4020 Man 29 2003
· · · · · · · · · · · · · · · · ·	' ' '			EPA 354.1 1971 APAT CNR IRSA 4020 Man 2

AZOTO					tate
Azoto	amı	mon	iac	ale	

					2003
Solventi organici arom	atici				
Benzene	μg/l	<0,05	1	0,05	EPA 5030C 2003 + EPA 8260D 2018
Etilbenzene	μg/l	<0,05	50	0,05	EPA 5030C 2003 + EPA 8260D 2018
(m+p)-Xilene	μg/l	0,082 +/- 0,031	10	0,04	EPA 5030C 2003 + EPA 8260D 2018
Stirene	μg/I	<0,05	25	0,05	EPA 5030C 2003 + EPA 8260D 2018
Toluene	μg/l	0,128 +/- 0,050	15	0,05	EPA 5030C 2003 + EPA 8260D 2018

					Cod. c	liente 11
RAPPORTO DI PROVA 2192	25 - 634772					
		5 1 11 1		Valori limite		••
	U.M.	Risultato	Incertezza	(L)	LOQ	Metodo
Anioni Cloruri	mg/l	53	+/- 11		0,1	APAT CNR IRSA 4020 Man
						2003 APAT CNR IRSA 4020 Man
Vitrati	mg/l	38	+/- 11		0,1	2003
Nitriti Solfati	μg/l mg/l	<30,0 53		500 250	30 0,1	EPA 354.1 1971 APAT CNR IRSA 4020 Man
	ilig/i		+/- 11	230	0,1	2003
Azoto e forme azotate		0.0100	./ 0.0026		0.04	APAT CNR IRSA 4030 A1 Ma
Azoto ammoniacale	mg/l	0,0102	+/- 0,0036		0,01	2003
Solventi organici aromatici						
Benzene	μg/l	<0,05		1	0,05	EPA 5030C 2003 + EPA 826 2018
Etilbenzene	μg/I	<0,05		50	0,05	EPA 5030C 2003 + EPA 826 2018
(m+p)-Xilene	μg/l	0,082	+/- 0,031	10	0,04	EPA 5030C 2003 + EPA 826 2018
Stirene	μg/l	<0,05		25	0,05	EPA 5030C 2003 + EPA 826
Toluene	μg/l	0,128	+/- 0,050	15	0,05	2018 EPA 5030C 2003 + EPA 826
Solventi organici alogenati v						2018
Clorometano	μg/l	<0,040		1,5	0.04	EPA 5030C 2003 + EPA 826
Cloroformio	μg/l		+/- 0,099	0,15	0,015	2018 EPA 5030C 2003 + EPA 826
Cloruro di vinile	μg/I	<0,050		0,5	0,05	2018 EPA 5030C 2003 + EPA 826
		· · · · · · · · · · · · · · · · · · ·				2018 EPA 5030C 2003 + EPA 826
1,2-Dicloroetano	μg/l	<0,030		3	0,03	2018
1,1-Dicloroetilene	μg/l	0,023		0,05	0,005	EPA 5030C 2003 + EPA 826 2018
Tricloroetilene	μg/l	0,28	+/- 0,13	1,5	0,03	EPA 5030C 2003 + EPA 826 2018
Tetracloroetilene	μg/I	3,4	+/- 1,1	1,1	0,05	EPA 5030C 2003 + EPA 826 2018
Esaclorobutadiene	μg/l	<0,015		0,15	0,015	EPA 5030C 2003 + EPA 826 2018
Sommatoria composti	μg/l	3,91 ^{x)}		10		EPA 5030C 2003 + EPA 826
organoalogenati 1,1-Dicloroetano	μg/l	<0,04		810	0,04	2018 EPA 5030C 2003 + EPA 826
Cis-1,2-dicloroetilene	μg/l	-	+/- 0,032	0.0	0,03	2018 EPA 5030C 2003 + EPA 826
						2018 EPA 5030C 2003 + EPA 826
Trans-1,2-dicloroetilene	µg/I	<0,050			0,05	2018
1,2-Dicloroetilene (Somma)	μg/l	0,065 ×)		60		EPA 5030C 2003 + EPA 826 2018
1,2-Dicloropropano	μg/l	0,0132	+/- 0,0062	0,15	0,01	EPA 5030C 2003 + EPA 826 2018
1,1,2-Tricloroetano	μg/I	<0,02		0,2	0,02	EPA 5030C 2003 + EPA 826 2018
1,2,3-Tricloropropano	μg/l	<0,001		0,001	0,001	EPA 5030C 2003 + EPA 826 2018
1,1,2,2-Tetracloroetano	μg/l	<0,005		0,05	0,005	EPA 5030C 2003 + EPA 826
Bromoformio	μg/l	<0,03		0,3	0,03	2018 EPA 5030C 2003 + EPA 826
1,2-Dibromoetano	μg/l	<0,001		0,001	0,001	2018 EPA 5030C 2003 + EPA 826
Dibromoclorometano	μg/l	<0,013		0,13	0,013	2018 EPA 5030C 2003 + EPA 826
						2018 EPA 5030C 2003 + EPA 826
Bromodiclorometano	μg/l	<0,017		0,17	0,017	2018

Via Retrone 29/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

Your labs. Your service.

Valori limite

Data	26.07.2021
Cod. cliente	11374

RAPPORTO DI PROVA 219225 - 634772

	U.M.	Risultato Incertezza	(L)	LOQ	Metodo
Antiparassitari					
Alaclor	μg/l	<0,010	0,1	0,01	EPA 3535A 2007 + EPA 8270E 2018
Aldrin	μg/l	<0,0030	0,03	0,003	EPA 3535A 2007 + EPA 8270E 2018
Atrazina	μg/l	<0,010	0,3	0,01	EPA 3535A 2007 + EPA 8270E 2018
Alfa-esaclorocicloesano (Alfa-HCH)	μg/l	<0,010	0,1	0,01	EPA 3535A 2007 + EPA 8270E 2018
Beta-esaclorocicloesano (Beta-HCH)	μg/l	<0,010	0,1	0,01	EPA 3535A 2007 + EPA 8270E 2018
Gamma-esaclorocicloesano (Lindano)	μg/l	<0,010	0,1	0,01	EPA 3535A 2007 + EPA 8270E 2018
Clordano	μg/l	<0,010	0,1	0,01	EPA 3535A 2007 + EPA 8270E 2018
2,4'-DDT + 4,4'-DDD	μg/l	<0,020	0,1	0,02	EPA 3535A 2007 + EPA 8270E 2018
Dieldrin	μg/l	<0,0030	0,03	0,003	EPA 3535A 2007 + EPA 8270E 2018
Endrin	μg/l	<0,010	0,1	0,01	EPA 3535A 2007 + EPA 8270E 2018
Sommatoria fitofarmaci	μg/l	0	0,5		EPA 3535A 2007 + EPA 8270E 2018
Idrocarburi					

	Idrocarburi C6÷C10 come n-esano	μg/l	<10		10	2007
3	Idrocarburi C10÷C40 come n-esano	μg/l	<100		100	UNI EN ISO 9377-2:2002
	Idrocarburi Totali come n-esano (da calcolo)	μg/l	0	350		EPA 5021A 2014 + EPA 8015C 2007 + UNI EN ISO 9377-2:2002
-						

Tensioattivi

Solamente le prove non accreditate sono contrassegnate con il simbolo " *) ".

la UNI CEI EN ISO/IEC 17025:2018.

questo documento sono accreditate secondo

Le prove riportate in

Tensioattivi totali (somma anionici, cationici, non ionici - da calcolo)	mg/l	0,340 x)		APAT CNR IRSA 5170 Man 29 2003 + MP-02258-IT 2020 Rev 1 + APAT CNR IRSA 5180 Man 29 2003
Tensioattivi cationici	mg/l	0,340 +/- 0,05	1 0,2	MP-02258-IT 2020 Rev 1
Tensioattivi anionici	mg/l	<0,0500	0,05	APAT CNR IRSA 5170 Man 29 2003
Tensioattivi non ionici etossilati *)	mg/l	<0,0500	0,05	APAT CNR IRSA 5180 Man 29 2003

Pesticidi

2,4'-DDD	μg/l	<0,0010	0,1	0,001	EPA 3535A 2007 + EPA 8270E 2018
4,4'-DDE	μg/l	<0,0010	0,1	0,001	EPA 3535A 2007 + EPA 8270E 2018
2,4'-DDE	μg/l	<0,0010	0,1	0,001	EPA 3535A 2007 + EPA 8270E 2018
{ 4,4'-DDT	μg/l	<0,0010	0,1	0,001	EPA 3535A 2007 + EPA 8270E 2018
DDD+DDT+DDE (Somma)	μg/l	0	0,1		EPA 3535A 2007 + EPA 8270E 2018

x) I valori singoli che non raggiungono il limite di quantificazione non sono stati considerati. Legenda:

Il segno "<" nella colonna del risultato indica che la sostanza in questione non è quantificabile al di sotto del limite di quantificazione indicato.

U.M.: Unità di misura

LOQ: Limite di quantificazione, concentrazione sopra alla quale un analita può essere quantificato.

Il calcolo dell' incertezza composta ed estesa citate nel presente rapporto di prova è basato sulla GUM (Guide to the expression of uncertainty in measurement, BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML, 2008) e sul Nordtest Report (Handbook for calculation of measurement uncertainty in environmental laboratories (TR 537 (ed. 4) 2017). Il fattore di copertura utilizzato è 2 per un livello di probabilità del 95% (intervallo di confidenza).

Valori limite (L): D.Lgs. 152/06 Parte IV Titolo V All.5 Tab.2 - Concentrazione soglia di contaminazione nelle acque sotterranee - SO nº 96/L GU nº 88 14/04/2006 e succ. mod. ed int.

Via Retrone 29/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

Data 26.07.2021

Cod. cliente 11374

RAPPORTO DI PROVA 219225 - 634772

Metodo di campionamento: ISO 5667-11:2009

I seguenti parametri superano i limiti o si trovano al di fuori dell'intervallo richiesto

Parametro di analisi Valore U.M.

Cloroformio 0,202 μ g/l (valore al di sopra del limite richiesto) Tetracloroetilene 3,4 μ g/l (valore al di sopra del limite richiesto)

Nota in merito alle sommatorie: le sommatorie, ove non diversamente specificato, vengono eseguite secondo la convenzione Lower Bound. Tale approccio prevede di considerare il contributo alla sommatoria di ogni addendo non rilevabile pari a zero.

Laddove non diversamente specificato, il recupero è all' interno del range di accettabilità del metodo; il risultato finale non viene pertanto corretto.

Data inizio prove: 25.06.2021 Data fine prove: 06.07.2021

EN ISO/IEC 17025:2018. Solamente le prove non accreditate sono contrassegnate con il

I risultati si riferiscono solamente ai campioni analizzati. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti. La riproduzione parziale del Rapporto di Prova deve essere autorizzata per iscritto dal Laboratorio. La regola decisionale applicata alle valutazioni di conformità, in mancanza di richieste diverse da parte del committente, non considera l'incertezza di misura.

Don.
Giulio Cosa.
WENETO
N. 1119 Sez. A
M. Direttore Technolo
(dr Giulio Lora)

Il Responsabile del Laboratorio (dr.ssa Anna Pagliani)

ARCI Giorgia Vidorni, Tel. 0444/1620869 Fax 0444 349041, E-Mail giorgia.vidorni@agrolab.it CRM Ambientale

Le prove riportate in questo documento sono accreditate secondo la UNI CEI

Via Retrone 29/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

MM S.p.a. Via del Vecchio Politecnico, 8 20121 MILANO (MI)

> Data 26.07.2021

Cod. cliente 11374

RAPPORTO DI PROVA 219225 - 634773

accreditate sono contrassegnate con il simbolo " *) ". Ordine 219225 CONTRATTO N° 2400000234 - CIG 86768299CC - Commessa:

CT-SEVESO / 5310

N. campione 634773 Acqua Ricevimento campione 25.06.2021 Data Campionamento 24.06.2021 11:59

Campionato da: AGROLAB Italia S.r.l. Walter Hellweger

Descrizione del campione fornita dal PZ02

cliente:

<u>0</u>

Solamente

17025:2018.

ISO/IEC

CEI

ACQ21/1586/2 Verbale e metodo di Campionamento:

Luogo di campionamento Cimitero Bruzzano Parco nord - Piezometro

Valori limite

U.M. Risultato Incertezza (L) LOQ Metodo

Carbonio organico totale (TOC) **0,98** +/- 0,39 0.5 UNI EN 1484:1999 mg/l Parametri in campo Concentrazione ioni idrogeno (in campo) 6,69 +/- 0,42 APAT CNR IRSA 2060 Man 29 2003 APAT CNR IRSA 2030 Man 29 Conducibilità elettrica specifica a 25°C (in μS/cm 699 +/- 52 2003 campo) APAT CNR IRSA 2100 Man 29 °C 17,71 +/- 0,23 Temperatura (in campo) 2003 +/- 0,46 Ossigeno disciolto (in campo) 7,60 0,05 UNI EN ISO 5814:2013 mg/l Ossigeno disciolto (% saturazione) (in campo) +/- 4,6 UNI EN ISO 5814:2013 % 77,1 0.6 +/- 15 Potenziale Redox (in campo) m۷ 135 UNI 10370:2010 Livello Freatimetrico m 18,17 MIP-740 2018 Rev 1.1

		_ 1	۰.			•
n	/1 (-1	12	31	ı	ı

ndo	Livello Freatimetrico *)	m	18,17				MIP-740 2018 Rev 1.1
con	Metalli						
Se	Alluminio (Al)	μg/l	<10,0		200	10	EPA 6020B 2014
tate	Antimonio (Sb)	μg/l	<0,50		5	0,5	EPA 6020B 2014
to sono accreditate	Argento (Ag)	μg/l	<0,50		10	0,5	EPA 6020B 2014
	Arsenico (As)	μg/l	<1,00		10	1	EPA 6020B 2014
	Berillio (Be)	μg/l	<0,40		4	0,4	EPA 6020B 2014
	Cadmio (Cd)	μg/l	<0,30		5	0,3	EPA 6020B 2014
	Cobalto (Co)	μg/l	<0,50		50	0,5	EPA 6020B 2014
umento	Cromo (Cr)	μg/l	2,9	+/- 1,0	50	1	EPA 6020B 2014
Ë	Cromo esavalente (CrVI)	μg/l	2,17	+/- 0,73	5	0,5	EPA 7199 1996
op	Ferro (Fe)	μg/l	<20,0		200	20	EPA 6010D 2018
	Manganese (Mn)	μg/l	<0,50		50	0,5	EPA 6020B 2014
questo	Mercurio (Hg)	μg/l	<0,10		1	0,1	EPA 6020B 2014
٩	Nichel (Ni)	μg/l	1,73	+/- 0,60	20	1	EPA 6020B 2014
. <u>=</u>	Piombo (Pb)	μg/l	<0,50		10	0,5	EPA 6020B 2014
rtate	Rame (Cu)	μg/l	<1,00		1000	1	EPA 6020B 2014
ribo	Selenio (Se)	μg/l	<1,00		10	1	EPA 6020B 2014
	Tallio (TI)	μg/l	<0,20		2	0,2	EPA 6020B 2014
orove	Zinco (Zn)	μg/l	16,5	+/- 5,8	3000	10	EPA 6020B 2014
Ω.			William William				

pagina 1 di 4

Via Retrone 29/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

Your labs. Your service.

Data	26.07.2021
Cod cliente	11374

:	RΔ	PP	ORTO	וח	PRO	VΔ	219225	- 634773	
,	11/		σ		1110	~~	_ J J	- 037113	

	U.IVI.	Hisuitato	incertezza	(∟)	LOQ	Merodo
Anioni						
Cloruri	mg/l	50	+/- 10		0,1	APAT CNR IRSA 4020 Man 29 2003
Nitrati	mg/l	38	+/- 11		0,1	APAT CNR IRSA 4020 Man 29 2003
Nitriti	μg/l	<30,0		500	30	EPA 354.1 1971
Solfati	mg/l	51	+/- 10	250	0,1	APAT CNR IRSA 4020 Man 29 2003

AZUIU E IUITILE aZUIAIE
Azoto ammoniacale

5 L					2000				
Solventi organici aromatici									
Benzene	μg/l	<0,05	1	0,05	EPA 5030C 2003 + EPA 8260D 2018				
Etilbenzene	μg/l	<0,05	50	0,05	EPA 5030C 2003 + EPA 8260D 2018				
(m+p)-Xilene	μg/l	0,068 +/- 0,026	10	0,04	EPA 5030C 2003 + EPA 8260D 2018				
Stirene	μg/l	<0,05	25	0,05	EPA 5030C 2003 + EPA 8260D 2018				
Toluene	μg/l	0,050 +/- 0,020	15	0,05	EPA 5030C 2003 + EPA 8260D				

AADDODTO DI DDOVA CACO	05 004==0				Cod. c	eliente 1
RAPPORTO DI PROVA 2192	25 - 634773			M-1		
	U.M.	Risultato	Incertezza	Valori limite (L)	LOQ	Metodo
Anioni						
Cloruri	mg/l	50	+/- 10		0,1	APAT CNR IRSA 4020 Mar 2003
Nitrati	mg/l	38	+/- 11		0,1	APAT CNR IRSA 4020 Mar
Nitriti	μg/l	<30,0		500	30	2003 EPA 354.1 1971
Solfati	mg/l	51	+/- 10	250	0,1	APAT CNR IRSA 4020 Mar 2003
Azoto e forme azotate	'					
Azoto ammoniacale	mg/l	0,115	+/- 0,040		0,01	APAT CNR IRSA 4030 A1 Ma 2003
Solventi organici aromatici	,					
Benzene	μg/l	<0,05		1	0,05	EPA 5030C 2003 + EPA 82 2018
Etilbenzene	μg/l	<0,05		50	0,05	EPA 5030C 2003 + EPA 82 2018
m+p)-Xilene	μg/l	0,068	+/- 0,026	10	0,04	EPA 5030C 2003 + EPA 82 2018
Stirene	μg/l	<0,05		25	0,05	EPA 5030C 2003 + EPA 82 2018
Toluene	μg/l	0,050	+/- 0,020	15	0,05	EPA 5030C 2003 + EPA 82 2018
Solventi organici alogenati v	volatili					2010
Clorometano	μg/l	<0,040		1,5	0,04	EPA 5030C 2003 + EPA 82 2018
Cloroformio	μg/l	0,72	+/- 0,35	0,15	0,015	EPA 5030C 2003 + EPA 82 2018
Cloruro di vinile	μg/l	<0,050		0,5	0,05	EPA 5030C 2003 + EPA 82 2018
1,2-Dicloroetano	μg/l	<0,030		3	0,03	EPA 5030C 2003 + EPA 82 2018
1,1-Dicloroetilene	μg/l	0,038	+/- 0,017	0,05	0,005	EPA 5030C 2003 + EPA 82 2018
Tricloroetilene	μg/l	0,33	+/- 0,15	1,5	0,03	EPA 5030C 2003 + EPA 82 2018
Tetracloroetilene	μg/l	1,16	+/- 0,50	1,1	0,05	EPA 5030C 2003 + EPA 82 2018
Esaclorobutadiene	μg/l	<0,015		0,15	0,015	EPA 5030C 2003 + EPA 82 2018
Sommatoria composti	μg/l	2,25 ^{x)}		10		EPA 5030C 2003 + EPA 82 2018
organoalogenati 1,1-Dicloroetano	μg/l	<0,04		810	0,04	EPA 5030C 2003 + EPA 82
Cis-1,2-dicloroetilene	μg/l	0,152	+/- 0,074		0,03	2018 EPA 5030C 2003 + EPA 82
Trans-1,2-dicloroetilene	μg/l	<0,050			0,05	2018 EPA 5030C 2003 + EPA 82
1,2-Dicloroetilene (Somma)	μg/l	0,15 ^{x)}		60	,	2018 EPA 5030C 2003 + EPA 82
I,2-Dicloropropano	μg/l	0,045	+/- 0,021	0,15	0,01	2018 EPA 5030C 2003 + EPA 82
1,1,2-Tricloroetano	μg/l	<0,02		0,2	0,02	2018 EPA 5030C 2003 + EPA 82
1,2,3-Tricloropropano	μg/l	<0,001		0,001	0,001	2018 EPA 5030C 2003 + EPA 82
1,1,2,2-Tetracloroetano	μg/l	<0,005		0,05	0,005	2018 EPA 5030C 2003 + EPA 82
Bromoformio	μg/l	<0,03		0,3	0,03	2018 EPA 5030C 2003 + EPA 82
1,2-Dibromoetano	μg/I	<0,001		0,001	0,001	2018 EPA 5030C 2003 + EPA 82
Dibromoclorometano		<0,001		0,13	0,001	2018 EPA 5030C 2003 + EPA 82
	μg/l					2018 EPA 5030C 2003 + EPA 82
Bromodiclorometano	μg/l	<0,017		0,17	0,017	2018

Via Retrone 29/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

Your labs. Your service.

Data 26.07.2021

RAPPORTO DI PROVA 219225 - 634773

					Data	26.07.20
DADDODTO DI DDOVA 21022	5 624772				Cod. c	cliente 113
RAPPORTO DI PROVA 21922	U.M.	Risultato	Incertezza	Valori limite (L)	LOQ	Metodo
Antiparassitari						
Alaclor	μg/l	<0,010		0,1	0,01	EPA 3535A 2007 + EPA 8270 2018
Aldrin	μg/l	<0,0030		0,03	0,003	EPA 3535A 2007 + EPA 8270 2018
Atrazina	μg/l	<0,010		0,3	0,01	EPA 3535A 2007 + EPA 8270 2018
Alfa-esaclorocicloesano (Alfa-HCH)	μg/l	<0,010		0,1	0,01	EPA 3535A 2007 + EPA 8270 2018
Beta-esaclorocicloesano (Beta-HCH)	μg/l	<0,010		0,1	0,01	EPA 3535A 2007 + EPA 8270 2018
Gamma-esaclorocicloesano (Lindano)	μg/l	<0,010		0,1	0,01	EPA 3535A 2007 + EPA 8270 2018
Clordano	μg/l	<0,010		0,1	0,01	EPA 3535A 2007 + EPA 8270 2018
2,4'-DDT + 4,4'-DDD	μg/l	<0,020		0,1	0,02	EPA 3535A 2007 + EPA 8270 2018
Dieldrin	μg/l	<0,0030		0,03	0,003	EPA 3535A 2007 + EPA 8270 2018
Endrin	μg/l	<0,010		0,1	0,01	EPA 3535A 2007 + EPA 8270 2018
Sommatoria fitofarmaci	μg/l	0		0,5		EPA 3535A 2007 + EPA 8270 2018
Idrocarburi						
Idrocarburi C6÷C10 come n-esano	μg/l	<10			10	EPA 5021A 2014 + EPA 8015 2007
Idrocarburi C10÷C40 come n-esano	μg/l	<100			100	UNI EN ISO 9377-2:200
Idrocarburi Totali come n-esano (da calcolo)	μg/l	0		350		EPA 5021A 2014 + EPA 8015 2007 + UNI EN ISO 9377-2:20
Tensioattivi						
Tensioattivi totali (somma anionici, cationici, non ionici - da calcolo)	*) mg/l	0,270 ×)				APAT CNR IRSA 5170 Man 29 2003 + MP-02258-IT 2020 Rev 1 + APAT CNR IRSA 5180 Man 29 2003
Tensioattivi cationici	mg/l	0,270	+/- 0,041		0,2	MP-02258-IT 2020 Rev
Tensioattivi anionici	mg/l	<0,0500			0,05	APAT CNR IRSA 5170 Man 2 2003
Tensioattivi non ionici etossilati	*) mg/l	<0,0500			0,05	APAT CNR IRSA 5180 Man 2 2003

2,4'-DDD	μg/l	<0,0010	0,1	0,001	EPA 3535A 2007 + EPA 8270E 2018
4,4'-DDE	μg/l	<0,0010	0,1	0,001	EPA 3535A 2007 + EPA 8270E 2018
g 2,4'-DDE	μg/l	<0,0010	0,1	0,001	EPA 3535A 2007 + EPA 8270E 2018
{ 4,4'-DDT	μg/l	<0,0010	0,1	0,001	EPA 3535A 2007 + EPA 8270E 2018
DDD+DDT+DDE (Somma)	μg/l	0	0,1		EPA 3535A 2007 + EPA 8270E 2018

x) I valori singoli che non raggiungono il limite di quantificazione non sono stati considerati. Legenda:

Il segno "<" nella colonna del risultato indica che la sostanza in questione non è quantificabile al di sotto del limite di quantificazione indicato.

U.M.: Unità di misura

Pesticidi

questo documento sono accreditate secondo

Le prove riportate in

LOQ: Limite di quantificazione, concentrazione sopra alla quale un analita può essere quantificato.

Il calcolo dell' incertezza composta ed estesa citate nel presente rapporto di prova è basato sulla GUM (Guide to the expression of uncertainty in measurement, BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML, 2008) e sul Nordtest Report (Handbook for calculation of measurement uncertainty in environmental laboratories (TR 537 (ed. 4) 2017). Il fattore di copertura utilizzato è 2 per un livello di probabilità del 95% (intervallo di confidenza).

Valori limite (L): D.Lgs. 152/06 Parte IV Titolo V All.5 Tab.2 - Concentrazione soglia di contaminazione nelle acque sotterranee - SO nº 96/L GU nº 88 14/04/2006 e succ. mod. ed int.

Via Retrone 29/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

Data 26.07.2021

Cod. cliente 11374

RAPPORTO DI PROVA 219225 - 634773

Metodo di campionamento: ISO 5667-11:2009

<u>I seguenti parametri superano i limiti o si trovano al di fuori dell'intervallo richiesto</u> *Parametro di analisi Valore U.M.*

Cloroformio 0,72 μg/l (valore al di sopra del limite richiesto)
Tetracloroetilene 1,16 μg/l (valore al di sopra del limite richiesto)

Nota in merito alle sommatorie: le sommatorie, ove non diversamente specificato, vengono eseguite secondo la convenzione Lower Bound. Tale approccio prevede di considerare il contributo alla sommatoria di ogni addendo non rilevabile pari a zero.

Laddove non diversamente specificato, il recupero è all' interno del range di accettabilità del metodo; il risultato finale non viene pertanto corretto.

Data inizio prove: 25.06.2021 Data fine prove: 06.07.2021

EN ISO/IEC 17025:2018. Solamente le prove non accreditate sono contrassegnate con il

I risultati si riferiscono solamente ai campioni analizzati. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti. La riproduzione parziale del Rapporto di Prova deve essere autorizzata per iscritto dal Laboratorio. La regola decisionale applicata alle valutazioni di conformità, in mancanza di richieste diverse da parte del committente, non considera l'incertezza di misura.

Don.
Giulio Cesa
WENETO
N. 1119 Sez. A
M. Direttore Technolo
(dr Girlino Lora)

Il Responsabile del Laboratorio (dr.ssa Anna Pagliani)

ARCI Giorgia Vidorni, Tel. 0444/1620869 Fax 0444 349041, E-Mail giorgia.vidorni@agrolab.it CRM Ambientale

Le prove riportate in questo documento sono accreditate secondo la UNI CEI

9 ALLEGATO 3 – ACQUE SUPERFICIALI 24/06/2021

Via Retrone 29/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

MM S.p.a. Via del Vecchio Politecnico, 8 20121 MILANO (MI)

> 26.07.2021 Data Cod. cliente 11374

RAPPORTO DI PROVA 219265 - 634769

accreditate sono contrassegnate con il simbolo " *) ". Ordine 219265 CONTRATTO N° 2400000234 - CIG 86768299CC - Commessa:

CT-SEVESO / 5310

N. campione 634769 Acqua Ricevimento campione 25.06.2021 Data Campionamento 24.06.2021 10:30

Campionato da: AGROLAB Italia S.r.l. Walter Hellweger

Descrizione del campione fornita dal C1 (monte)

cliente:

<u>0</u>

Solamente

ISO/IEC 17025:2018.

Verbale e metodo di Campionamento: ACQ21/1586/3

Luogo di campionamento Cimitero Bruzzano Parco nord - fiume Valore

U.M.

APAT CNR IRSA 2110 Man 29 Torbidità FTU 4,4 +/- 1,3 0.4 2003 mg O2/I Richiesta chimica di ossigeno (COD) 13,1 +/- 5,2 3 ISO 15705:2002 UNI EN 1484:1999 Carbonio organico totale (TOC) mg/l 5,8 +/- 1,4 0,5 APAT CNR IRSA 2090 B Man 29 Solidi Sospesi Totali mg/l 2,00 +/- 0,80 1 2003

Risultato Incertezza

limite

LOQ

Metodo

Parametri in campo

j)	Concentrazione ioni idrogeno (in campo)		7,76	+/- 0,49			APAT CNR IRSA 2060 Man 29 2003
	Conducibilità elettrica specifica a 25°C (in campo)	μS/cm	791	+/- 59	1		APAT CNR IRSA 2030 Man 29 2003
2	Temperatura (in campo)	°C	23,00	+/- 0,30			APAT CNR IRSA 2100 Man 29 2003
	Ossigeno disciolto (in campo)	mg/l	7,90	+/- 0,47	0,0)5	UNI EN ISO 5814:2013
	Ossigeno disciolto (% saturazione) (in campo)	%	81,7	+/- 4,9	0,	6	UNI EN ISO 5814:2013
2	Potenziale Redox (in campo)	mV	90	+/- 11			UNI 10370:2010

		_	_	-
B 4			ı	:
IVI	ета	ı	ı	ı

	i didiliotii ili odilipo					
CEI	Concentrazione ioni idrogeno (in campo)		7,76	+/- 0,49		APAT CNR IRSA 2060 Man 29 2003
S	Conducibilità elettrica specifica a 25°C (in campo)	μS/cm	791	+/- 59	1	APAT CNR IRSA 2030 Man 29 2003
secondo la	Temperatura (in campo)	°C	23,00	+/- 0,30		APAT CNR IRSA 2100 Man 29 2003
ő	Ossigeno disciolto (in campo)	mg/l	7,90	+/- 0,47	0,05	UNI EN ISO 5814:2013
sec	Ossigeno disciolto (% saturazione) (in campo)	%	81,7	+/- 4,9	0,6	UNI EN ISO 5814:2013
ate	Potenziale Redox (in campo)	mV	90	+/- 11		UNI 10370:2010
accreditate	Metalli					
Ö	Alluminio (Al)	μg/l	93	+/- 12	10	EPA 6020B 2014
	Antimonio (Sb)	μg/l	1,76	+/- 0,53	0,5	EPA 6020B 2014
sono	Argento (Ag)	μg/l	<0,50		0,5	EPA 6020B 2014
	Arsenico (As)	μg/l	2,64	+/- 0,92	1	EPA 6020B 2014
ieni	Berillio (Be)	μg/l	<0,40		0,4	EPA 6020B 2014
Ë	Cadmio (Cd)	μg/l	<0,30		0,3	EPA 6020B 2014
documento	Cobalto (Co)	μg/l	0,52	+/- 0,18	0,5	EPA 6020B 2014
	Cromo (Cr)	μg/l	1,67	+/- 0,58	1	EPA 6020B 2014
riportate in questo	Cromo esavalente (CrVI)	μg/l	<0,50		0,5	EPA 7199 1996
βL	Ferro (Fe)	μg/l	101	+/- 36	20	EPA 6010D 2018
e. e.	Manganese (Mn)	μg/l	14,2	+/- 9,6	0,5	EPA 6020B 2014
rtat	Mercurio (Hg)	μg/l	<0,10		0,1	EPA 6020B 2014
<u>8</u>	Nichel (Ni)	μg/l	13,6	+/- 4,1	1	EPA 6020B 2014
	Piombo (Pb)	μg/l	1,85	+/- 0,65	0,5	EPA 6020B 2014
prove	Rame (Cu)	μg/l	6,3	+/- 1,9	1	EPA 6020B 2014
0			11/11/11/11/11/11/11/11/11/11/11/11/11/			

pagina 1 di 6

Via Retrone 29/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

Your labs. Your service.

RAPPORTO DI PROVA 219265 - 634769

			\	√alore		
) :	U.M.	Risultato Ince	ertezza	limite	LOQ	Metodo
Selenio (Se)	μg/l	<1,00			1	EPA 6020B 2014
Tallio (TI)	μg/l	<0,20			0,2	EPA 6020B 2014
Zinco (Zn)	μg/l	136 +	-/- 41		10	EPA 6020B 2014
Anioni						
Cloruri	mg/l	114 +	-/- 11		0,1	APAT CNR IRSA 4020 Man 29 2003
Nitrati	mg/l	7,2 +/	/- 2,9		0,1	APAT CNR IRSA 4020 Man 29 2003
Nitriti	μg/l	310 +/	/- 120		30	EPA 354.1 1971
Solfati	mg/l	61,4 +/	/- 6,1		0,1	APAT CNR IRSA 4020 Man 29 2003
Componenti inorganici						
Fosforo totale (come P2O5)	μg/l	1070 +/	/- 320		20	M.U. 2252:08
Azoto e forme azotate						
Azoto ammoniacale	mg/l	0,231 +/-	- 0,058		0,01	APAT CNR IRSA 4030 A1 Man 29 2003
Solventi organici aromatici						
Benzene	μg/l	<0,05			0,05	EPA 5030C 2003 + EPA 8260D 2018
Etilbenzene	μg/l	<0,05			0,05	EPA 5030C 2003 + EPA 8260D 2018
(m+p)-Xilene	μg/l	<0,04			0,04	EPA 5030C 2003 + EPA 8260D 2018
o-Xilene	μg/l	<0,05			0,05	EPA 5030C 2003 + EPA 8260D 2018
Stirene	μg/l	<0,05			0,05	EPA 5030C 2003 + EPA 8260D 2018
Toluene	μg/l	<0,05			0,05	EPA 5030C 2003 + EPA 8260D 2018
Solventi organici alogenati	volatili					
Clorometano	μg/l	<0,040			0,04	EPA 5030C 2003 + EPA 8260D 2018
Cloroformio	μg/l	<0,015			0,015	EPA 5030C 2003 + EPA 8260D

					Data	26.07.2021
					Cod. c	cliente 11374
RAPPORTO DI PROVA 2192	265 - 634769			Mala:		
	U.M.	Risultato	Incertezza	Valore limite	LOQ	Metodo
Selenio (Se)	μg/l	<1,00			1	EPA 6020B 2014
fallio (TI)	μg/l	<0,20	/ 44		0,2	EPA 6020B 2014
Zinco (Zn) Anioni	μg/l	136	+/- 41		10	EPA 6020B 2014
Cloruri	mg/l	114	+/- 11		0,1	APAT CNR IRSA 4020 Man 29
litrati	mg/l	7,2	+/- 2,9		0,1	2003 APAT CNR IRSA 4020 Man 29
Vitriti	μg/l	310	+/- 120		30	2003 EPA 354.1 1971
Solfati	mg/l	61,4	+/- 6,1		0,1	APAT CNR IRSA 4020 Man 29
Componenti inorganici	-					2003
osforo totale (come P2O5)	μg/l	1070	+/- 320		20	M.U. 2252:08
Azoto e forme azotate	11.0					
Azoto ammoniacale	mg/l	0,231	+/- 0,058		0,01	APAT CNR IRSA 4030 A1 Man 29 2003
Solventi organici aromatici						
Benzene	μg/l	<0,05			0,05	EPA 5030C 2003 + EPA 8260D 2018
Etilbenzene	μg/l	<0,05			0,05	EPA 5030C 2003 + EPA 8260D 2018
m+p)-Xilene	μg/l	<0,04			0,04	EPA 5030C 2003 + EPA 8260D
p-Xilene	μg/l	<0,05			0,05	2018 EPA 5030C 2003 + EPA 8260D
tirene	μg/l	<0,05			0,05	2018 EPA 5030C 2003 + EPA 8260D
oluene	μg/l	<0,05			0,05	2018 EPA 5030C 2003 + EPA 8260D
olventi organici alogenati	volatili					2018
Clorometano	μg/l	<0,040			0,04	EPA 5030C 2003 + EPA 8260D
Cloroformio	μg/l	<0,015			0,015	2018 EPA 5030C 2003 + EPA 8260D
Cloruro di vinile	μg/l	<0,050			0,05	2018 EPA 5030C 2003 + EPA 8260D
,2-Dicloroetano	μg/l	<0,030			0,03	2018 EPA 5030C 2003 + EPA 8260D
,1-Dicloroetilene	μg/l	<0,0050			0,005	2018 EPA 5030C 2003 + EPA 8260D
	μg/l	<0,030			0,03	2018 EPA 5030C 2003 + EPA 8260D
Tetracloroetilene	μg/l	<0,050			0,05	2018 EPA 5030C 2003 + EPA 8260D
Esaclorobutadiene		<0,015			0,015	2018 EPA 5030C 2003 + EPA 8260D
Sommatoria composti	μg/l				0,013	2018 EPA 5030C 2003 + EPA 8260D
organoalogenati	μg/l	0				2018
,1-Dicloroetano	μg/l	<0,04			0,04	EPA 5030C 2003 + EPA 8260D 2018
Cis-1,2-dicloroetilene	μg/l	<0,030			0,03	EPA 5030C 2003 + EPA 8260D 2018
Trans-1,2-dicloroetilene	μg/l	<0,050			0,05	EPA 5030C 2003 + EPA 8260D 2018
,2-Dicloroetilene (Somma)	μg/l	0				EPA 5030C 2003 + EPA 8260D 2018
,2-Dicloropropano	μg/l	<0,01			0,01	EPA 5030C 2003 + EPA 8260D 2018
1,1,2-Tricloroetano	μg/l	<0,02			0,02	EPA 5030C 2003 + EPA 8260D 2018
,2,3-Tricloropropano	μg/l	<0,001			0,001	EPA 5030C 2003 + EPA 8260D
1,1,2,2-Tetracloroetano	μg/l	<0,005			0,005	2018 EPA 5030C 2003 + EPA 8260D
		<0,005				2018 pagina 2 di 6

L'ENTE ITALIANO DI ACCREDITAMENTO

Via Retrone 29/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

Your labs. Your service.

RAPPORTO DI PROVA 219265 - 634769

	U.M.	Risultato Ince	rtezza limite	LOQ	Metodo
Bromoformio	μg/l	<0,03		0,03	EPA 5030C 2003 + EPA 8260D 2018
Bromodiclorometano	μg/l	<0,017		0,017	EPA 5030C 2003 + EPA 8260D 2018
1,1,1,2-Tetracloroetano	μg/l	<0,05		0,05	EPA 5030C 2003 + EPA 8260D 2018
1,1,1-Tricloroetano	μg/l	<0,015		0,015	EPA 5030C 2003 + EPA 8260D 2018
1,1,2-Triclorotrifluoroetano	*) µg/l	<0,02		0,02	EPA 5030C 2003 + EPA 8260D 2018
1,1-Dicloropropene	μg/l	<1		1	EPA 5030C 2003 + EPA 8260D 2018
1,1,2,2-Tetrabromoetano	*) µg/l	<2		2	EPA 3535A 2007 + EPA 8270E 2018
1,2-Dibromo-3-cloropropano	μg/l	<1		1	EPA 5030C 2003 + EPA 8260D 2018
1,3-Dicloropropano	μg/l	<1,0		1	EPA 5030C 2003 + EPA 8260D 2018
1-Bromo-2-cloroetano	*) µg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D 2018
2,2-Dicloropropano	μg/l	<1		1	EPA 5030C 2003 + EPA 8260D 2018
2,3-Dicloropropene	μg/l	<1		1	EPA 5030C 2003 + EPA 8260D 2018
2-Cloro-1,3-butadiene (Beta-cloroprene)	μg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D 2018
3-Cloropropene	μg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D 2018
Benzilcloruro	μg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D 2018
Bromoclorometano	μg/l	<0,04		0,04	EPA 5030C 2003 + EPA 8260D 2018
Bromometano	μg/l	<0,14		0,14	EPA 5030C 2003 + EPA 8260D 2018
Bromotriclorometano	*) µg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D 2018
Cis-1,3-Dicloropropene	μg/l	<1,0		1	EPA 5030C 2003 + EPA 8260D 2018
Cloroetano	μg/l	<0,08		0,08	EPA 5030C 2003 + EPA 8260D 2018
Dibromometano	μg/l	<0,15		0,15	EPA 5030C 2003 + EPA 8260D 2018
Diclorodifluorometano	μg/l	<0,16		0,16	EPA 5030C 2003 + EPA 8260D 2018
Diclorometano	μg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D 2018
Esacloroetano	μg/l	<0,05		0,05	EPA 5030C 2003 + EPA 8260D 2018
Pentacloroetano	μg/l	<0,05		0,05	EPA 5030C 2003 + EPA 8260D 2018
Tetraclorometano	μg/l	<0,015		0,015	EPA 5030C 2003 + EPA 8260D 2018
Trans-1,3-Dicloropropene	μg/l	<1		1	EPA 5030C 2003 + EPA 8260D 2018
Triclorofluorometano	μg/l	<0,015		0,015	EPA 5030C 2003 + EPA 8260D 2018
Olavahannani aamiyalatili				1	2010

ğ	Esaclorobenzene	μg/I	<0,0010		0,001	2018
_						

-	 	ı,	7	ra	-	-		7	
,,	 •	r	·			•	••	·	•

				Data	26.07.202
RAPPORTO DI PROVA 21926	E 624760			Cod. c	liente 11374
RAPPORTO DI PROVA 21926	U.M.	Risultato Incertezza	Valore limite	LOQ	Metodo
Bromoformio	μg/l	<0,03		0,03	EPA 5030C 2003 + EPA 8260D 2018
Bromodiclorometano	μg/l	<0,017		0,017	EPA 5030C 2003 + EPA 8260D 2018
1,1,1,2-Tetracloroetano	μg/l	<0,05		0,05	EPA 5030C 2003 + EPA 8260D 2018
1,1,1-Tricloroetano	μg/l	<0,015		0,015	EPA 5030C 2003 + EPA 8260D 2018
1,1,2-Triclorotrifluoroetano	*) µg/I	<0,02		0,02	EPA 5030C 2003 + EPA 8260D 2018
1,1-Dicloropropene	μg/l	<1		1	EPA 5030C 2003 + EPA 8260D 2018
1,1,2,2-Tetrabromoetano	*) µg/l	<2		2	EPA 3535A 2007 + EPA 8270E 2018
1,2-Dibromo-3-cloropropano	μg/l	<1		1	EPA 5030C 2003 + EPA 8260D 2018
1,3-Dicloropropano	μg/l	<1,0		1	EPA 5030C 2003 + EPA 8260D 2018
1-Bromo-2-cloroetano	*) µg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D 2018
2,2-Dicloropropano	μg/l	<1		1	EPA 5030C 2003 + EPA 8260D 2018
2,3-Dicloropropene	μg/l	<1		1	EPA 5030C 2003 + EPA 8260D 2018
2-Cloro-1,3-butadiene (Beta-cloroprene)	μg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D 2018
3-Cloropropene	μg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D 2018
Benzilcloruro	μg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D 2018
Bromoclorometano	μg/l	<0,04		0,04	EPA 5030C 2003 + EPA 8260D 2018
Bromometano	μg/l	<0,14		0,14	EPA 5030C 2003 + EPA 8260D 2018
Bromotriclorometano	*) µg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D 2018
Cis-1,3-Dicloropropene	μg/l	<1,0		1	EPA 5030C 2003 + EPA 8260D 2018
Cloroetano	μg/l	<0,08		0,08	EPA 5030C 2003 + EPA 8260D 2018
Dibromometano	μg/l	<0,15		0,15	EPA 5030C 2003 + EPA 8260D 2018
Diclorodifluorometano	μg/l	<0,16		0,16	EPA 5030C 2003 + EPA 8260D 2018
Diclorometano	μg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D 2018
Esacloroetano	μg/l	<0,05		0,05	EPA 5030C 2003 + EPA 8260D 2018
Pentacloroetano	μg/l	<0,05		0,05	EPA 5030C 2003 + EPA 8260D 2018
Tetraclorometano	μg/l	<0,015		0,015	EPA 5030C 2003 + EPA 8260D 2018
Trans-1,3-Dicloropropene	μg/l	<1		1	EPA 5030C 2003 + EPA 8260D 2018
Triclorofluorometano	μg/l	<0,015		0,015	EPA 5030C 2003 + EPA 8260D 2018
Clorobenzeni semivolatili					2010
Esaclorobenzene	μg/l	<0,0010		0,001	EPA 3535A 2007 + EPA 8270E 2018
Antiparassitari					
Alaclor	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Aldrin	μg/l	<0,0030		0,003	EPA 3535A 2007 + EPA 8270E 2018
Atrazina	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Alfa-esaclorocicloesano (Alfa-HCH)	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
			100	חברו	pagina 3 di 6

Via Retrone 29/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

Your labs. Your service.

RAPPORTO DI PROVA 219265 - 634769

				Data		26.07.202
RAPPORTO DI PROVA 219265	5 - 634769			Cod. c	liente	1137
TALL OTTO DIT HOVA 219200	U.M.	Risultato Incertez	Valore za limite	LOQ	Metodo	
Beta-esaclorocicloesano (Beta-HCH)	μg/l	<0,010		0,01		07 + EPA 8270E 018
Gamma-esaclorocicloesano (Lindano)	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Clordano	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
2,4'-DDT + 4,4'-DDD	μg/l	<0,020		0,02	EPA 3535A 20	07 + EPA 8270E 018
Dieldrin	μg/l	<0,0030		0,003	EPA 3535A 20	07 + EPA 8270E 018
Endrin	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Atrazina-desetil	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Clortal-dimetil	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Metolaclor	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Metribuzin	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Molinate	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Pendimetalin	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Prometrina	*) µg/l	<0,010		0,01	EPA 3535A 200	7 + EPA 8270E
Propazina	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Propizamide	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Simazina	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Terbutrina	*) µg/l	<0,010		0,01	EPA 3535A 200	7 + EPA 8270E
Terbutilazina	µg/I	0,159 +/- 0,0	59	0,01	EPA 3535A 20	07 + EPA 8270E 018
Terbutilazina-desetil	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Alfa-endosulfan	µg/I	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Trifluralin	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Beta-endosulfan	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Clorpirifos-etile	μg/I	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Clorpirifos-metile	µg/I	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Delta-esaclorocicloesano (Delta-HCH)	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Diazinone	µg/I	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Endosulfan solfato	μg/I	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Eptacloro	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Fenitrotion	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Eptacloro epossido	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Isodrin	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Malation	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Metossicloro	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Paration-metile	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018

Via Retrone 29/31 via netrone ≥9/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

Your labs. Your service.

RAPPORTO DI PROVA 219265 - 634769

				Data	26.07.2
RAPPORTO DI PROVA 21926	5 - 634769			Cod. c	cliente 11
11A 1 61116 B11 116 VA 21626	U.M.	Risultato Incertezz	Valore a limite	LOQ	Metodo
Carbofenotion	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 827 2018
Clorfenvinfos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 827 2018
Clormefos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 823 2018
Diclorvos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 827 2018
Edifenfos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 823 2018
Etion	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 827 2018
Fenclorfos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 823 2018
Formotion	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 823 2018
Eptenofos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 823 2018
lodofenfos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 827 2018
Metidation	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 823 2018
Mevinfos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 827 2018
Paration-etile	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 823 2018
Pirazofos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 827 2018
Piridafention	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 82 2018
Quinalfos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 827 2018
Tetraclorvinfos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 823 2018
Tolclofos-metile	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 827 2018
Triazofos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 827 2018
Sommatoria antiparassitari totali	*) µg/l	0,16 x)			EPA 3535A 2007 + EPA 8270 2018
Idrocarburi		' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '			2010
Idrocarburi C6÷C10 come n-esano	μg/l	<10		10	EPA 5021A 2014 + EPA 80° 2007
Idrocarburi C10÷C40 come n-esano	μg/l	<100		100	UNI EN ISO 9377-2:20 EPA 5021A 2014 + EPA 80
Idrocarburi Totali come n-esano (da calcolo)	μg/l	0			2007 + UNI EN ISO 9377-2:2
Tensioattivi Tensioattivi totali (somma anionici, cationici, non ionici - da calcolo)	*) mg/l	0,390 ×)			APAT CNR IRSA 5170 Man 2 2003 + MP-02258-IT 2020 Re 1 + APAT CNR IRSA 5180 Ma
Tensioattivi cationici	mg/l	0,390 +/- 0,059)	0,2	29 2003 MP-02258-IT 2020 Re
Tensioattivi anionici	mg/l	<0,0500		0,05	APAT CNR IRSA 5170 Man 2003
Tensioattivi non ionici etossilati	*) mg/l	<0,0500		0,05	APAT CNR IRSA 5180 Man 2003
Pesticidi					
2,4'-DDD	μg/l	<0,0010		0,001	EPA 3535A 2007 + EPA 827 2018
4,4'-DDE	μg/l	<0,0010		0,001	EPA 3535A 2007 + EPA 827 2018
2,4'-DDE	μg/l	<0,0010		0,001	EPA 3535A 2007 + EPA 827 2018
4,4'-DDT	μg/l	<0,0010		0,001	EPA 3535A 2007 + EPA 827 2018

Analisi microbiologiche

Via Retrone 29/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

Your labs. Your service.

1/-1---

Data 26.07.2021

Cod. cliente 11374

RAPPORTO DI PROVA 219265 - 634769

U.M.	Risultato Ir	ncertezza	limite	LOQ	Metodo
UFC/100ml	150			1	UNI EN ISO 7899-2:2003
UFC/100ml	130000			1	UNI EN ISO 9308-1:2017
UFC/100ml	4000			1	UNI EN ISO 9308-1:2017
	UFC/100ml UFC/100ml	UFC/100ml 150 UFC/100ml 130000	UFC/100ml 150 UFC/100ml 130000	U.M. Risultato Incertezza limite UFC/100ml 150 UFC/100ml 130000	U.M. Risultato Incertezza limite LOQ UFC/100ml 150 1 UFC/100ml 130000 1

Altri parametri analizzati:

Richiesta biochimica di ossigeno (BOD5) mg/l 4 2 UNI EN ISO 5815-1

x) I valori singoli che non raggiungono il limite di quantificazione non sono stati considerati.

Il segno "<" nella colonna del risultato indica che la sostanza in questione non è quantificabile al di sotto del limite di quantificazione indicato.

U.M.: Unità di misura

sono contrassegnate con il simbolo

non accreditate

<u>o</u>

Solamente

17025:2018.

ISO/IEC

Le prove riportate in questo documento sono accreditate secondo la UNI CEI

LOQ: Limite di quantificazione, concentrazione sopra alla quale un analita può essere quantificato.
Il calcolo dell' incertezza composta ed estesa citate nel presente rapporto di prova è basato sulla GUM (Guide to the expression of uncertainty in measurement, BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML, 2008) e sul Nordtest Report (Handbook for calculation of measurement uncertainty in environmental laboratories (TR 537 (ed. 4) 2017). Il fattore di copertura utilizzato è 2 per un livello di probabilità del 95% (intervallo di confidenza).

Metodo di campionamento: ISO 5667-11:2009; UNI EN ISO 19458:2006

Nota in merito alle sommatorie: le sommatorie, ove non diversamente specificato, vengono eseguite secondo la convenzione Lower Bound. Tale approccio prevede di considerare il contributo alla sommatoria di ogni addendo non rilevabile pari a zero.

Laddove non diversamente specificato, il recupero è all' interno del range di accettabilità del metodo; il risultato finale non viene pertanto corretto. Nota ai metodi microbiologici che riportano il dato in UFC: quando il risultato è compreso tra 1 e 3 UFC, il microrganismo è da intendersi come " presente"; quando il risultato è compreso fra 4-10 UFC il valore numerico è da intendersi puramente indicativo.

Data inizio prove: 25.06.2021 Data fine prove: 06.07.2021

I risultati si riferiscono solamente ai campioni analizzati. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti. La riproduzione parziale del Rapporto di Prova deve essere autorizzata per iscritto dal Laboratorio. La regola decisionale applicata alle valutazioni di conformità, in mancanza di richieste diverse da parte del committente, non considera l'incertezza di misura.

Il Responsabile del Laboratorio (dr.ssa Anna Pagliani)

ARCI Giorgia Vidorni, Tel. 0444/1620869 Fax 0444 349041, E-Mail giorgia.vidorni@agrolab.it CRM Ambientale

Via Retrone 29/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

MM S.p.a. Via del Vecchio Politecnico, 8 20121 MILANO (MI)

> Data 26.07.2021 Cod. cliente

11374

RAPPORTO DI PROVA 219265 - 634770

Ordine 219265 CONTRATTO N° 2400000234 - CIG 86768299CC - Commessa:

CT-SEVESO / 5310

N. campione 634770 Acqua Ricevimento campione 25.06.2021 Data Campionamento 24.06.2021 13:10

Campionato da: AGROLAB Italia S.r.l. Walter Hellweger

Descrizione del campione fornita dal C2 (valle)

cliente:

<u>0</u>

accreditate sono contrassegnate con il simbolo " *) ".

Torbidità	FTU	4,3	+/- 1,3	0,4	APAT CNR IRSA 2110 Man 29 2003
Richiesta chimica di ossigeno (COD)	mg O2/I	18,3	+/- 7,3	3	ISO 15705:2002
Carbonio organico totale (TOC)	mg/l	8,5	+/- 1,3	0,5	UNI EN 1484:1999
Solidi Sospesi Totali	mg/l	6,0	+/- 2,4	1	APAT CNR IRSA 2090 B Man 29 2003

۲	ar	ar	ne	tr	Ί	ın	C	aı	m	p	0	

]	Concentrazione ioni idrogeno (in campo)		7,91	+/- 0,50		APAT CNR IRSA 2060 Man 29 2003
•	Conducibilità elettrica specifica a 25°C (in campo)	μS/cm	779	+/- 58	1	APAT CNR IRSA 2030 Man 29 2003
2	Temperatura (in campo)	°C	24,94	+/- 0,32		APAT CNR IRSA 2100 Man 29 2003
5	Ossigeno disciolto (in campo)	mg/l	6,88	+/- 0,41	0,05	UNI EN ISO 5814:2013
	Ossigeno disciolto (% saturazione) (in campo)	%	69,9	+/- 4,2	0,6	UNI EN ISO 5814:2013
2	Potenziale Redox (in campo)	mV	143	+/- 16		UNI 10370:2010

Metalli

Luogo di campionamento	Cimit	ero Bruzzano Pa	arco norc	ı - Fiume		
	U.M.	Risultato	Incertezza	Valore limite	LOQ	Metodo
Torbidità	FTU	4,3	+/- 1,3		0,4	APAT CNR IRSA 2110 Man 2 2003
Richiesta chimica di ossigeno (COD)	mg O2/I	18,3	+/- 7,3		3	ISO 15705:2002
Carbonio organico totale (TOC)	mg/l	8,5	+/- 1,3		0,5	UNI EN 1484:1999
Solidi Sospesi Totali	mg/l	6,0	+/- 2,4		1	APAT CNR IRSA 2090 B Man 2003
Parametri in campo						
Concentrazione ioni idrogeno (in campo)		7,91	+/- 0,50			APAT CNR IRSA 2060 Man 2 2003
Conducibilità elettrica specifica a 25°C (in campo)	μS/cm	779	+/- 58		1	APAT CNR IRSA 2030 Man 2 2003
Temperatura (in campo)	°C	24,94	+/- 0,32			APAT CNR IRSA 2100 Man 2 2003
Ossigeno disciolto (in campo)	mg/l	6,88	+/- 0,41		0.05	UNI EN ISO 5814:201
Ossigeno disciolto (% saturazione) (in campo)	%	69,9	+/- 4,2		0.6	UNI EN ISO 5814:201
Potenziale Redox (in campo)	mV	143	+/- 16		,	UNI 10370:2010
Metalli		,				
Alluminio (Al)	μg/l	101	+/- 13		10	EPA 6020B 2014
Antimonio (Sb)	μg/l	1,71	+/- 0,51		0,5	EPA 6020B 2014
Argento (Ag)	μg/l	<0,50			0,5	EPA 6020B 2014
Arsenico (As)	μg/l	2,58	+/- 0,90		1	EPA 6020B 2014
Berillio (Be)	μg/l	<0,40			0,4	EPA 6020B 2014
Cadmio (Cd)	μg/l	<0,30			0,3	EPA 6020B 2014
Cobalto (Co)	μg/l	0,58	+/- 0,20		0,5	EPA 6020B 2014
Cromo (Cr)	μg/l	1,53	+/- 0,53		1	EPA 6020B 2014
Cromo esavalente (CrVI)	μg/l	<0,50			0,5	EPA 7199 1996
Ferro (Fe)	μg/l	119	+/- 43		20	EPA 6010D 2018
Manganese (Mn)	μg/l	28	+/- 19		0,5	EPA 6020B 2014
Mercurio (Hg)	μg/l	<0,10			0,1	EPA 6020B 2014
Nichel (Ni)	μg/l	12,7	+/- 3,8		1	EPA 6020B 2014
Piombo (Pb)	μg/l	1,08	+/- 0,38		0,5	EPA 6020B 2014
Rame (Cu)	μg/l	6,2	+/- 22		1	EPA 6020B 2014

pagina 1 di 6

Via Retrone 29/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

Your labs. Your service.

RAPPORTO DI PROVA 219265 - 634770

			Valore		
	U.M.	Risultato Ince		LOQ	Metodo
Selenio (Se)	μg/l	<1,00		1	EPA 6020B 2014
Tallio (TI)	μg/l	<0,20		0,2	EPA 6020B 2014
Zinco (Zn)	μg/l	87 +	/- 26	10	EPA 6020B 2014
Anioni					
Cloruri	mg/l	113 +	/- 11	0,1	APAT CNR IRSA 4020 Man 29 2003
Nitrati	mg/l	6,1 +/	/- 2,4	0,1	APAT CNR IRSA 4020 Man 29 2003
Nitriti	μg/l	300 +/-	- 120	30	EPA 354.1 1971
Solfati	mg/l	61,4 +/	/- 6,1	0,1	APAT CNR IRSA 4020 Man 29 2003
Componenti inorganici					
Fosforo totale (come P2O5)	μg/l	1250 +/-	- 250	20	M.U. 2252:08
Azoto e forme azotate					
Azoto ammoniacale	mg/l	0,275 +/-	0,069	0,01	APAT CNR IRSA 4030 A1 Man 29 2003
Solventi organici aromatici					
Benzene	μg/l	<0,05		0,05	EPA 5030C 2003 + EPA 8260D 2018
Etilbenzene	μg/l	<0,05		0,05	EPA 5030C 2003 + EPA 8260D 2018
(m+p)-Xilene	μg/l	0,29 +/-	- 0,11	0,04	EPA 5030C 2003 + EPA 8260D 2018
o-Xilene	μg/l	0,23 +/-	- 0,11	0,05	EPA 5030C 2003 + EPA 8260D 2018
Stirene	μg/l	<0,05		0,05	EPA 5030C 2003 + EPA 8260D 2018
Toluene	μg/l	<0,05		0,05	EPA 5030C 2003 + EPA 8260D 2018
Solventi organici alogenati	volatili				
Clorometano	μg/l	<0,040		0,04	EPA 5030C 2003 + EPA 8260D

					Cod. c	cliente 11374
RAPPORTO DI PROVA 2192	65 - 634770					
	U.M.	Risultato	Incertezza	Valore limite	LOQ	Metodo
Selenio (Se)	μg/l	<1,00			1	EPA 6020B 2014
allio (TI)	μg/l	<0,20			0,2	EPA 6020B 2014
Zinco (Zn)	μg/l	87	+/- 26		10	EPA 6020B 2014
Anioni Cloruri	mg/l	113	+/- 11		0,1	APAT CNR IRSA 4020 Man 29
						2003
litrati	mg/l	6,1	+/- 2,4		0,1	APAT CNR IRSA 4020 Man 29 2003
litriti	μg/l	300	+/- 120		30	EPA 354.1 1971 APAT CNR IRSA 4020 Man 29
olfati	mg/l	61,4	+/- 6,1		0,1	2003
Componenti inorganici						
Fosforo totale (come P2O5)	μg/l	1250	+/- 250		20	M.U. 2252:08
zoto e forme azotate		0.0==	/ 0.000		0.04	APAT CNR IRSA 4030 A1 Man 29
zoto ammoniacale	mg/l	0,275	+/- 0,069		0,01	2003
olventi organici aromatici	lug/l	-0.05	1		0.05	EPA 5030C 2003 + EPA 8260D
Benzene	μg/l	<0,05			0,05	2018
tilbenzene	μg/l	<0,05			0,05	EPA 5030C 2003 + EPA 8260D 2018
n+p)-Xilene	μg/l	0,29	+/- 0,11		0,04	EPA 5030C 2003 + EPA 8260D 2018
-Xilene	μg/l	0,23	+/- 0,11		0,05	EPA 5030C 2003 + EPA 8260D 2018
Stirene	μg/l	<0,05			0,05	EPA 5030C 2003 + EPA 8260D 2018
oluene	μg/l	<0,05			0,05	EPA 5030C 2003 + EPA 8260D 2018
Solventi organici alogenati v	volatili					2010
Clorometano	μg/l	<0,040			0,04	EPA 5030C 2003 + EPA 8260D 2018
Cloroformio	μg/l	<0,015			0,015	EPA 5030C 2003 + EPA 8260D 2018
Cloruro di vinile	μg/l	<0,050			0,05	EPA 5030C 2003 + EPA 8260D 2018
1,2-Dicloroetano	μg/l	<0,030			0,03	EPA 5030C 2003 + EPA 8260D 2018
,1-Dicloroetilene	μg/l	<0,0050			0,005	EPA 5030C 2003 + EPA 8260D
<i>Fricloroetilene</i>	μg/l	<0,030			0,03	2018 EPA 5030C 2003 + EPA 8260D
Tetracloroetilene	μg/l	<0,050			0,05	2018 EPA 5030C 2003 + EPA 8260D
Esaclorobutadiene	μg/l	<0,015			0,015	2018 EPA 5030C 2003 + EPA 8260D
Sommatoria composti	μg/l	0				2018 EPA 5030C 2003 + EPA 8260D 2018
nganoalogenati ,1-Dicloroetano	μg/l	<0,04			0,04	EPA 5030C 2003 + EPA 8260D
Cis-1,2-dicloroetilene	μg/l	<0,030			0,03	2018 EPA 5030C 2003 + EPA 8260D
Trans-1,2-dicloroetilene	μg/l	<0,050			0,05	2018 EPA 5030C 2003 + EPA 8260D
1,2-Dicloroetilene (Somma)	μg/l	0			-	2018 EPA 5030C 2003 + EPA 8260D
,2-Dicloropropano	μg/l	<0,01			0,01	2018 EPA 5030C 2003 + EPA 8260D
1,1,2-Tricloroetano	μg/l	<0,02			0,02	2018 EPA 5030C 2003 + EPA 8260D
1,2,3-Tricloropropano	μg/l	<0,001			0,001	2018 EPA 5030C 2003 + EPA 8260D
1,1,2,2-Tetracloroetano	μg/l	<0,005			0,005	2018 EPA 5030C 2003 + EPA 8260D
		<0,005				2018 pagina 2 di 6

L'ENTE ITALIANO DI ACCREDITAMENTO

Via Retrone 29/31 Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

Your labs. Your service.

RAPPORTO DI PROVA 219265 - 634770

Bromodiclorometano	5	U.M.	Risultato Incertezza	limite	LOQ	Metodo
Bromodiclorometano	Bromoformio	μg/l	<0,03		0,03	
1,1,1,2-Tetracloroetano μg/l <0,05 0,05 EPA 5030C 2003 + EPA 8280D 2018 1,1,1-Tricloroetano μg/l <0,015 0,015 EPA 5030C 2003 + EPA 8280D 2018 1,1,2-Triclororifluroroetano μg/l <0,02 0,02 EPA 5030C 2003 + EPA 8280D 2018 1,1-Dicloropropene μg/l <1 1 EPA 5030C 2003 + EPA 8280D 2018 1,1,2,2-Tetrabromoetano μg/l <2 2 EPA 3353 A 2007 + EPA 8280D 2018 1,2,2-Tetrabromoetano μg/l <1 1 EPA 5030C 2003 + EPA 8280D 2018 1,2,2-Tetrabromoetano μg/l <1,0 1 EPA 5030C 2018 1,3-Dicloropropano μg/l <1,0 1 EPA 5030C 2018 + EPA 8280D 2018 1,3-Dicloropropano μg/l <1,0 1 EPA 5030C 2018 + EPA 8280D 2018 1,3-Dicloropropano μg/l <1 1 EPA 5030C 2018 + EPA 8280D 2018 2,2-Dicloropropano μg/l <1 1 EPA 5030C 2003 + EPA 8280D 2018 2,2-Dicloropropano μg/l <1 1 EPA 5030C 2003 + EPA 8280D 2018 2,3-Dicloropropene μg/l <1 1 EPA 5030C 2003 + EPA 8280D 2018 2,3-Dicloropropene μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8280D 2018 3-Cloropropene μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8280D 2018 3-Cloropropene μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8280D 2018 3-Cloropropene μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8280D 2018 3-Cloropropene μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8280D 2018 3-Cloropropene μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8280D 2018 3-Cloropropene μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8280D 2018 3-Cloropropene μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8280D 2018 3-Cloropropene μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8280D 2018 3-Cloropropene μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8280D 2018 3-Cloropropene μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8280D 2018 3-Cloropropene μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8280D 2018 3-Cloropropene μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8280D 2018 3-Cloropropene μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8280D 2018 3-Cloropropene μg/l <0,1	Bromodiclorometano	μg/l	<0,017		0,017	EPA 5030C 2003 + EPA 8260D
1,1,2-Triclorotrifluoroetano	1,1,1,2-Tetracloroetano	μg/l	<0,05		0,05	EPA 5030C 2003 + EPA 8260D
1,1,2-Triclorotrifluoroetano	1,1,1-Tricloroetano	μg/l	<0,015		0,015	EPA 5030C 2003 + EPA 8260D
1,1-Dicloropropene	1,1,2-Triclorotrifluoroetano	μg/l	<0,02		0,02	EPA 5030C 2003 + EPA 8260D
1,1,2,2-Tetrabromoetano	1,1-Dicloropropene	μg/l	<1		1	EPA 5030C 2003 + EPA 8260D
1,3-Dicloropropano µg/l <1,0 1 EPA 5030C 2003 + EPA 8260D 2018 1-Bromo-2-cloroetano ¹ µg/l <0,1	1,1,2,2-Tetrabromoetano	μg/l	<2		2	EPA 3535A 2007 + EPA 8270E
1,3-Dicloropropano µg/I <1,0	1,2-Dibromo-3-cloropropano	μg/l	<1		1	EPA 5030C 2003 + EPA 8260D
1-Bromo-2-cloroetano уру/л <0,1	1,3-Dicloropropano	μg/l	<1,0		1	EPA 5030C 2003 + EPA 8260D
2,3-Dicloropropene μg/l <1 1 EPA 5030C 2003 + EPA 8260D 2018	1-Bromo-2-cloroetano	μg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D
2-Cloro-1,3-butadiene (Beta-cloroprene) μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8260D 2018	2,2-Dicloropropano	μg/l	<1		1	
2-Cloro-1,3-butadiene (Beta-cloroprene) µg/l <0,1	2,3-Dicloropropene	μg/l	<1		1	
3-Cloropropene μg/l	2-Cloro-1,3-butadiene (Beta-cloroprene)	μg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D
Benzilcloruro μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8260D 2018	3-Cloropropene	μg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D
Bromoclorometano μg/l <0,04 0,04 EPA 5030C 2003 + EPA 8260D 2018 Bromometano μg/l <0,14 0,14 EPA 5030C 2003 + EPA 8260D 2018 Bromotriclorometano μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8260D 2018 Cis-1,3-Dicloropropene μg/l <1,0 1 EPA 5030C 2003 + EPA 8260D 2018 Cloroetano μg/l <0,08 0,08 EPA 5030C 2003 + EPA 8260D 2018 Cloroetano μg/l <0,08 0,08 EPA 5030C 2003 + EPA 8260D 2018 Dibromometano μg/l <0,15 0,15 EPA 5030C 2003 + EPA 8260D 2018 Diclorodifluorometano μg/l <0,16 0,16 EPA 5030C 2003 + EPA 8260D 2018 Diclorometano μg/l <0,16 0,16 EPA 5030C 2003 + EPA 8260D 2018 Esacloroetano μg/l <0,01 0,1 EPA 5030C 2003 + EPA 8260D 2018 Esacloroetano μg/l <0,05 0,05 EPA 5030C 2003 + EPA 8260D 2018 Pentacloroetano μg/l <0,05 0,05 EPA 5030C 2003 + EPA 8260D 2018 Tetraclorometano μg/l <0,05 0,05 EPA 5030C 2003 + EPA 8260D 2018 Tetraclorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <1 EPA 5030C 2003 + EPA 826	Benzilcloruro	μg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D
Bromometano μg/l <0,14 0,14 EPA 5030C 2003 + EPA 8260D 2018 Bromotriclorometano 0,1 2018 Cis-1,3-Dicloropropene μg/l <1,0 1 EPA 5030C 2003 + EPA 8260D 2018 Cloroetano μg/l <0,08 0,08 EPA 5030C 2003 + EPA 8260D 2018 Cloroetano μg/l <0,08 0,08 EPA 5030C 2003 + EPA 8260D 2018 Dibromometano μg/l <0,15 0,15 EPA 5030C 2003 + EPA 8260D 2018 Diclorodifluorometano μg/l <0,16 0,16 EPA 5030C 2003 + EPA 8260D 2018 Diclorometano μg/l <0,16 0,16 EPA 5030C 2003 + EPA 8260D 2018 Diclorometano μg/l <0,16 0,1 EPA 5030C 2003 + EPA 8260D 2018 Esacloroetano μg/l <0,05 0,05 EPA 5030C 2003 + EPA 8260D 2018 Pentacloroetano μg/l <0,05 0,05 EPA 5030C 2003 + EPA 8260D 2018 Tetraclorometano μg/l <0,01 0,015 EPA 5030C 2003 + EPA 8260D 2018 Tetracloropropene μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Tetraclorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorof	Bromoclorometano	μg/l	<0,04		0,04	EPA 5030C 2003 + EPA 8260D
Cis-1,3-Dicloropropene	Bromometano	μg/l	<0,14		0,14	EPA 5030C 2003 + EPA 8260D
Cis-1,3-Dicloropropene μg/l <1,0 1 EPA 5030C 2003 + EPA 8260D 2018 Cloroetano μg/l <0,08	Bromotriclorometano *)	μg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D
Cloroetano μg/l <0,08 EPA 5030C 2003 + EPA 8260D 2018 Dibromometano μg/l <0,15	Cis-1,3-Dicloropropene	μg/l	<1,0		1	EPA 5030C 2003 + EPA 8260D
Dibromometano μg/l <0,15 EPA 5030C 2003 + EPA 8260D 2018 Diclorodifluorometano μg/l <0,16 0,16 EPA 5030C 2003 + EPA 8260D 2018 Diclorometano μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8260D 2018 Diclorometano μg/l <0,01 EPA 5030C 2003 + EPA 8260D 2018 Esacloroetano μg/l <0,05 EPA 5030C 2003 + EPA 8260D 2018 Pentacloroetano μg/l <0,05 EPA 5030C 2003 + EPA 8260D 2018 Tetraclorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Trans-1,3-Dicloropropene μg/l <1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C	Cloroetano	μg/l	<0,08		0,08	
Diclorodifluorometano μg/l <0,16 0,16 EPA 5030C 2003 + EPA 8260D 2018 Diclorometano μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8260D 2018 Esacloroetano μg/l <0,05 0,05 EPA 5030C 2003 + EPA 8260D 2018 Pentacloroetano μg/l <0,05 0,05 EPA 5030C 2003 + EPA 8260D 2018 Tetraclorometano μg/l <0,015 0,015 EPA 5030C 2003 + EPA 8260D 2018 Trans-1,3-Dicloropropene μg/l <1 1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <1 1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclo	Dibromometano	μg/l	<0,15		0,15	EPA 5030C 2003 + EPA 8260D
Diclorometano μg/l <0,1 0,1 EPA 5030C 2003 + EPA 8260D 2018 Esacloroetano μg/l <0,05 0,05 EPA 5030C 2003 + EPA 8260D 2018 Pentacloroetano μg/l <0,05 0,05 EPA 5030C 2003 + EPA 8260D 2018 Tetraclorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Trans-1,3-Dicloropropene μg/l <1 1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <1 1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano	Diclorodifluorometano	μg/l	<0,16		0,16	
Esacloroetano μg/l <0,05 0,05 EPA 5030C 2003 + EPA 8260D 2018 Pentacloroetano μg/l <0,05 0,05 EPA 5030C 2003 + EPA 8260D 2018 Tetraclorometano μg/l <0,015 0,015 EPA 5030C 2003 + EPA 8260D 2018 Trans-1,3-Dicloropropene μg/l <1 1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofl	Diclorometano	μg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D
Pentacloroetano μg/l <0,05 0,05 EPA 5030C 2003 + EPA 8260D 2018 Tetraclorometano μg/l <0,015 0,015 EPA 5030C 2003 + EPA 8260D 2018 Trans-1,3-Dicloropropene μg/l <1 1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0,015 EPA 5030C 2003 + EPA 8260D 2018 Triclorom	Esacloroetano	μg/l	<0,05		0,05	EPA 5030C 2003 + EPA 8260D
Tetraclorometano μg/l <0,015 0,015 EPA 5030C 2003 + EPA 8260D 2018 Trans-1,3-Dicloropropene μg/l <1 1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015 EPA 5030C 2003 + EPA 8260D 2018 Triclorofl	Pentacloroetano	μg/l	<0,05		0,05	EPA 5030C 2003 + EPA 8260D
Trans-1,3-Dicloropropene μg/l <1 1 EPA 5030C 2003 + EPA 8260D 2018 Triclorofluorometano μg/l <0.015	Tetraclorometano	μg/l	<0,015		0,015	EPA 5030C 2003 + EPA 8260D
Triclorofluorometano ug/l <0.015	Trans-1,3-Dicloropropene	μg/l	<1		1	EPA 5030C 2003 + EPA 8260D
	Triclorofluorometano	μg/l	<0,015		0,015	EPA 5030C 2003 + EPA 8260D

	_		-	-	
\sim 1	arak	20070	ni c	nmi\/∕	olatili
		JEIIZE		=11110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Esaclorobenzene	μg/l	<0.0010	0.001	EPA 3535A 2007 + EPA 8270E
)	F-9/-		-,	2018

Antiparassitari

				Data	26.07.202
DADDODTO DI DDOVA CACCO				Cod. c	liente 1137
RAPPORTO DI PROVA 21926	U.M.	Risultato Incertezza	Valore limite	LOQ	Metodo
Bromoformio	μg/l	<0,03		0,03	EPA 5030C 2003 + EPA 8260D 2018
Bromodiclorometano	μg/l	<0,017		0,017	EPA 5030C 2003 + EPA 8260D 2018
1,1,1,2-Tetracloroetano	μg/l	<0,05		0,05	EPA 5030C 2003 + EPA 8260D 2018
1,1,1-Tricloroetano	μg/l	<0,015		0,015	EPA 5030C 2003 + EPA 8260D 2018
1,1,2-Triclorotrifluoroetano	*) µg/l	<0,02		0,02	EPA 5030C 2003 + EPA 8260D 2018
1,1-Dicloropropene	μg/l	<1		1	EPA 5030C 2003 + EPA 8260D 2018
1,1,2,2-Tetrabromoetano	*) µg/l	<2		2	EPA 3535A 2007 + EPA 8270E 2018
1,2-Dibromo-3-cloropropano	μg/l	<1		1	EPA 5030C 2003 + EPA 8260D 2018
1,3-Dicloropropano	μg/l	<1,0		1	EPA 5030C 2003 + EPA 8260D 2018
1-Bromo-2-cloroetano	*) µg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D 2018
2,2-Dicloropropano	μg/l	<1		1	EPA 5030C 2003 + EPA 8260D 2018
2,3-Dicloropropene	μg/l	<1		1	EPA 5030C 2003 + EPA 8260D 2018
2-Cloro-1,3-butadiene (Beta-cloroprene)	μg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D 2018
3-Cloropropene	μg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D 2018
Benzilcloruro	μg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D 2018
Bromoclorometano	μg/l	<0,04		0,04	EPA 5030C 2003 + EPA 8260D 2018
Bromometano	μg/l	<0,14		0,14	EPA 5030C 2003 + EPA 8260D 2018
Bromotriclorometano	*) µg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D 2018
Cis-1,3-Dicloropropene	μg/l	<1,0		1	EPA 5030C 2003 + EPA 8260D 2018
Cloroetano	μg/l	<0,08		0,08	EPA 5030C 2003 + EPA 8260D 2018
Dibromometano	μg/l	<0,15		0,15	EPA 5030C 2003 + EPA 8260D 2018
Diclorodifluorometano	μg/l	<0,16		0,16	EPA 5030C 2003 + EPA 8260D 2018
Diclorometano	μg/l	<0,1		0,1	EPA 5030C 2003 + EPA 8260D 2018
Esacloroetano	μg/l	<0,05		0,05	EPA 5030C 2003 + EPA 8260D 2018
Pentacloroetano	μg/l	<0,05		0,05	EPA 5030C 2003 + EPA 8260D 2018
Tetraclorometano	μg/l	<0,015		0,015	EPA 5030C 2003 + EPA 8260D 2018
Trans-1,3-Dicloropropene	μg/l	<1		1	EPA 5030C 2003 + EPA 8260D 2018
Triclorofluorometano	μg/l	<0,015		0,015	EPA 5030C 2003 + EPA 8260D 2018
Clorobenzeni semivolatili					2010
Esaclorobenzene	μg/l	<0,0010		0,001	EPA 3535A 2007 + EPA 8270E 2018
Antiparassitari		-			
Alaclor	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Aldrin	μg/l	<0,0030		0,003	EPA 3535A 2007 + EPA 8270E 2018
Atrazina	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Alfa-esaclorocicloesano (Alfa-HCH)	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
			ACC	חברו	pagina 3 di 6

Via Retrone 29/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

Your labs. Your service.

RAPPORTO DI PROVA 219265 - 634770

				Data		26.07.202
RAPPORTO DI PROVA 219265	S - 634770			Cod. c	liente	1137
TALL OTTO DILLIOVA 21920.	U.M.	Risultato Incertez	Valore za limite	LOQ	Metodo	
Beta-esaclorocicloesano (Beta-HCH)	μg/l	<0,010		0,01		07 + EPA 8270E 018
Gamma-esaclorocicloesano (Lindano)	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Clordano	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
2,4'-DDT + 4,4'-DDD	μg/l	<0,020		0,02	EPA 3535A 20	07 + EPA 8270E 018
Dieldrin	μg/l	<0,0030		0,003	EPA 3535A 20	07 + EPA 8270E 018
Endrin	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Atrazina-desetil	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Clortal-dimetil	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Metolaclor	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Metribuzin	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Molinate	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Pendimetalin	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Prometrina	^{*)} μg/l	<0,010		0,01	EPA 3535A 200 20	7 + EPA 8270E
Propazina	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Propizamide	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Simazina	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Terbutrina	*) μg/l	<0,010		0,01	EPA 3535A 200 20	7 + EPA 8270E
Terbutilazina	μg/l	0,148 +/- 0,0	55	0,01	EPA 3535A 20	07 + EPA 8270E 018
Terbutilazina-desetil	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Alfa-endosulfan	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Trifluralin	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Beta-endosulfan	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Clorpirifos-etile	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Clorpirifos-metile	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Delta-esaclorocicloesano (Delta-HCH)	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Diazinone	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Endosulfan solfato	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Eptacloro	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Fenitrotion	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Eptacloro epossido	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Isodrin	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Malation	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Metossicloro	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018
Paration-metile	μg/l	<0,010		0,01	EPA 3535A 20	07 + EPA 8270E 018

Via Retrone 29/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

Your labs. Your service.

Cod. cliente

Data 26.07.2021

11374

RAPPORTO DI PROVA 219265 - 634770

			Valore		
) =	U.M.	Risultato Incertezza	limite	LOQ	Metodo
Carbofenotion	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Clorfenvinfos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Clormefos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Diclorvos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Edifenfos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Etion	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Fenclorfos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Formotion	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Eptenofos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
lodofenfos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Metidation	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Mevinfos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Paration-etile	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Pirazofos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Piridafention	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Quinalfos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Tetraclorvinfos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Tolclofos-metile	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Triazofos	μg/l	<0,010		0,01	EPA 3535A 2007 + EPA 8270E 2018
Sommatoria antiparassitari totali	^{t)} μg/l	0,15 *			EPA 3535A 2007 + EPA 8270E 2018
Idrocarburi					
Idrocarburi C6÷C10 come n-esano	μg/l	<10		10	EPA 5021A 2014 + EPA 8015C

2	Idrocarburi C6÷C10 come n-esano	μg/l	<10	10	EPA 5021A 2014 + EPA 8015C 2007
5	Idrocarburi C10÷C40 come n-esano	μg/l	<100	100	UNI EN ISO 9377-2:2002
,	Idrocarburi Totali come n-esano (da calcolo)	μg/l	0		EPA 5021A 2014 + EPA 8015C 2007 + UNI EN ISO 9377-2:2002

Tensioattivi

to documento sono accreditate secondo la UNI CEI EN ISO/IEC 17025:2018. Solamente le prove non accreditate sono contrassegnate con il simbolo "*) ".

Tensioattivi totali (somma anionici, cationici, non ionici - da calcolo)	mg/l	0,400 ×)			APAT CNR IRSA 5170 Man 29 2003 + MP-02258-IT 2020 Rev 1 + APAT CNR IRSA 5180 Man 29 2003
Tensioattivi cationici	mg/l	0,400	+/- 0,060	0,2	MP-02258-IT 2020 Rev 1
Tensioattivi anionici	mg/l	<0,0500		0,05	APAT CNR IRSA 5170 Man 29 2003
Tensioattivi non ionici etossilati *)	mg/l	<0,0500		0,05	APAT CNR IRSA 5180 Man 29 2003

Pesticidi

nes	2,4'-DDD	μg/l	<0,0010	0,001	EPA 3535A 2007 + EPA 8270E 2018
	4,4'-DDE	μg/l	<0,0010	0,001	EPA 3535A 2007 + EPA 8270E 2018
ortate	2,4'-DDE	μg/l	<0,0010	0,001	EPA 3535A 2007 + EPA 8270E 2018
e ripc	4,4'-DDT	μg/l	<0,0010	0,001	EPA 3535A 2007 + EPA 8270E 2018

Analisi microbiologiche

Via Retrone 29/31 36077 Altavilla Vicentina VI - Italy Tel.: +39 0444 349040 Fax: +39 0444 349041 altavilla@agrolab.it www.agrolab.it

Data 26.07.2021

Cod. cliente 11374

RAPPORTO DI PROVA 219265 - 634770

	U.M.	Risultato Incertezza	limite	LOQ	Metodo
Conta Enterococchi intestinali	UFC/100ml	600		1	UNI EN ISO 7899-2:2003
Conta Coliformi totali	UFC/100ml	120000		1	UNI EN ISO 9308-1:2017
Conta Escherichia coli	UFC/100ml	4600		1	UNI EN ISO 9308-1:2017

Valore

Altri parametri analizzati:

Richiesta biochimica di ossigeno (BOD5) mg/l 4 2 UNI EN ISO 5815-1

x) I valori singoli che non raggiungono il limite di quantificazione non sono stati considerati.

Il segno "<" nella colonna del risultato indica che la sostanza in questione non è quantificabile al di sotto del limite di quantificazione indicato.

U.M.: Unità di misura

sono contrassegnate con il simbolo

non accreditate

<u>o</u>

Solamente

17025:2018.

ISO/IEC

Le prove riportate in questo documento sono accreditate secondo la UNI CEI

LOQ: Limite di quantificazione, concentrazione sopra alla quale un analita può essere quantificato.

Il calcolo dell' incertezza composta ed estesa citate nel presente rapporto di prova è basato sulla GUM (Guide to the expression of uncertainty in measurement, BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML, 2008) e sul Nordtest Report (Handbook for calculation of measurement uncertainty in environmental laboratories (TR 537 (ed. 4) 2017). Il fattore di copertura utilizzato è 2 per un livello di probabilità del 95% (intervallo di confidenza).

Metodo di campionamento: ISO 5667-11:2009; UNI EN ISO 19458:2006

Nota in merito alle sommatorie: le sommatorie, ove non diversamente specificato, vengono eseguite secondo la convenzione Lower Bound. Tale approccio prevede di considerare il contributo alla sommatoria di ogni addendo non rilevabile pari a zero.

Laddove non diversamente specificato, il recupero è all' interno del range di accettabilità del metodo; il risultato finale non viene pertanto corretto. Nota ai metodi microbiologici che riportano il dato in UFC: quando il risultato è compreso tra 1 e 3 UFC, il microrganismo è da intendersi come " presente"; quando il risultato è compreso fra 4-10 UFC il valore numerico è da intendersi puramente indicativo.

Data inizio prove: 25.06.2021 Data fine prove: 06.07.2021

I risultati si riferiscono solamente ai campioni analizzati. Nei casi in cui il laboratorio non sia responsabile del campionamento, i risultati si riferiscono ai campioni come sono stati ricevuti. La riproduzione parziale del Rapporto di Prova deve essere autorizzata per iscritto dal Laboratorio. La regola decisionale applicata alle valutazioni di conformità, in mancanza di richieste diverse da parte del committente, non considera l'incertezza di misura.

Il Responsabile del Laboratorio (dr.ssa Anna Pagliani)

ARCI Giorgia Vidorni, Tel. 0444/1620869 Fax 0444 349041, E-Mail giorgia.vidorni@agrolab.it CRM Ambientale

10 ALLEGATO 4 - RUMORE 20-22/06/2021

CENTRO DI PRODUZIONE E MAGAZZINO:
24060 ROGNO (Bg) – Via Monte Grappa, 9
Tel. 035 967046 – Fax 035 967106
CENTRO DI PRODUZIONE:
25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125
Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

Committente: MM SPA

<u>Cantiere</u>: lavori per la costruzione di una vasca di contenimento delle piene del Seveso

Milano (MI)

Ingresso cantiere: Piazzale Martiri della Deportazione

PGRUM - Piano di Gestione Integrata del Rumore di Cantiere

(Norma UNI 11728:2018)

MODULO 6: RISULTATI DEI MONITORAGGI ACUSTICI IN CONTINUO

Revisione MODULO	Data	Descrizione	Redazione PGRUM	Approvazione PGRUM
0	2/11/2020	Deliverable PGRUM dell'ambito: MONITORAGGIO ACUSTICO DEL CANTIERE - Prima stesura - PGRUM revl 2nov MODULO 6.docx	Consulente TCA Enteca 2084 Silvia Quatrini	Responsabile Attuazione PGRUM Lorenzo Rocchini

CENTRO DI PRODUZIONE E MAGAZZINO: 24060 ROGNO (Bg) – Via Monte Grappa, 9 Tel. 035 967046 – Fax 035 967106 CENTRO DI PRODUZIONE: 25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125 Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

REPORT MENSILE 72 h - CENTRALINA 1

FOTOGRAFIA DELLA CENTRALINA	Presso:	Perimetro condominio ex Aler	
	Indirizzo:	Via Papa Giovanni XXIII 103/106	
	Piano:	Bresso - h 3,5 m	
	DA:	data: 20 giugno 2021 ora: 00.00	
	A:	data: 22 giugno 2021 ora: 23.00	
	INQUADI	RAMENTO TERRITORIALE	
45°31'44.7"N 9°11'14.3"E 45.529071, 9.187304	Micratino del Iranio del Propieto del Propie		
TR diurno: ¹	TR notturn	no ² :	
LeqA: 46.5 dBA	LeqA:	43.0 dBA	
L10: 48.4 dBA	L10:	43.3 dBA	
L50: 43.6 dBA	L50:	43.1 dBA	
L90: 41.0 dBA	L90:	42.8 dBA	
L95: 40.3 dBA	L95:	42.7 dBA	

LeqA ₁	41.3	LeqA ₂	42.0	LeqA ₃	42.4
LeqA ₄	43.0	LeqA ₅	44.3	LeqA ₆	46.3
LeqA ₇	44.7	LeqA ₈	44.0	LeqA ₉	43.3

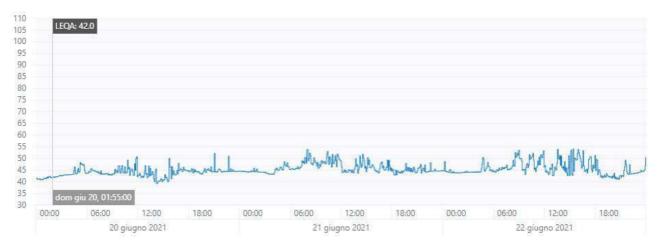
¹ Su intervallo temporale h. 14.00.00 22giu21.

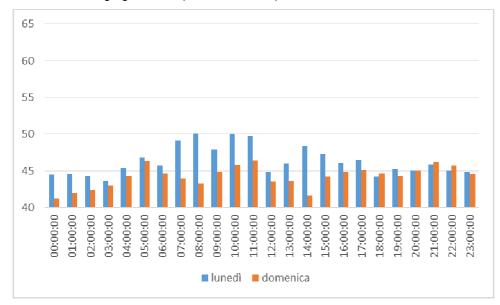
² Su intervallo temporale h. 03.00.00 20giu21.

CENTRO DI PRODUZIONE E MAGAZZINO: 24060 ROGNO (Bg) – Via Monte Grappa, 9
Tel. 035 967046 – Fax 035 967106
CENTRO DI PRODUZIONE:
25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125
Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

LeqA ₁₀	44.8	LeqA ₁₁	45.8	LeqA ₁₂	46.4
LeqA ₁₃	43.5	LeqA ₁₄	43.6	LeqA ₁₅	41.6
LeqA ₁₆	44.2	LeqA ₁₇	44.8	LeqA ₁₈	45.1
LeqA ₁₉	44.7	LeqA ₂₀	44.3	LeqA ₂₁	45.0
LeqA ₂₂	46.2	LeqA ₂₃	45.7	LeqA ₂₄	44.6
LeqA ₂₅	44.5	LeqA ₂₆	44.6	LeqA ₂₇	44.3
LeqA ₂₈	43.6	LeqA ₂₉	45.4	LeqA ₃₀	46.8
LeqA ₃₁	45.7	LeqA ₃₂	49.1	LeqA ₃₃	50.1
LeqA ₃₄	47.9	LeqA ₃₅	50.0	LeqA ₃₆	49.7
LeqA ₃₇	44.8	LeqA ₃₈	46.0	LeqA ₃₉	48.4
LeqA ₄₀	47.3	LeqA ₄₁	46.1	LeqA ₄₂	46.5
LeqA ₄₃	44.2	LeqA ₄₄	45.3	LeqA ₄₅	45.0
LeqA ₄₆	45.9	LeqA ₄₇	45.0	LeqA ₄₈	44.8
LeqA ₄₉	45.1	LeqA ₅₀	44.0	LeqA ₅₁	44.2
LeqA ₅₂	44.2	LeqA ₅₃	46.4	LeqA ₅₄	45.9
LeqA ₅₅	45.1	LeqA ₅₆	45.9	LeqA ₅₇	50.3
LeqA ₅₈	47.6	LeqA ₅₉	49.4	LeqA ₆₀	50.0
LeqA ₆₁	45.2	LeqA ₆₂	49.2	LeqA ₆₃	46.5
LeqA ₆₄	50.8	LeqA ₆₅	49.1	LeqA ₆₆	48.4
LeqA ₆₇	45.3	LeqA ₆₈	42.5	LeqA ₆₉	42.1
LeqA ₇₀	45.0	LeqA ₇₁	44.1	LeqA ₇₂	45.7
	1				

RAPPRESENTAZIONE GRAFICA DELLE MISURE:

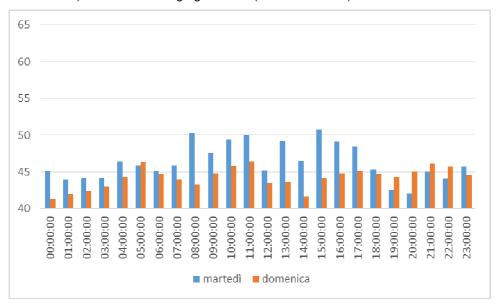

Grafico t [s] / SPL (A, fast) [dBA]


CENTRO DI PRODUZIONE E MAGAZZINO:
24060 ROGNO (Bg) – Via Monte Grappa, 9
Tel. 035 967046 – Fax 035 967106
CENTRO DI PRODUZIONE:
25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125
Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

Osservazioni:

- La rumorosità del fiume Seveso è la causa dei superamenti dei limiti assoluti di immissione notturni
- Si veda il seguente grafico, che confronta i valori LeqA orari di lunedì 21 giugno (rumore ambientale) e domenica 22 giugno 2021 (rumore residuo):

Il contributo delle attività di cantiere, stimato cautelativamente in quanto sono compresi e non depurati tutti gli eventi sonori avvenuti nei periodi temporali confrontati, è valutato fino a + 7.0 dBA (differenza algebrica, comprensiva del contributo del fiume Seveso; il rumore idrico è maggiore



CENTRO DI PRODUZIONE E MAGAZZINO:
24060 ROGNO (Bg) – Via Monte Grappa, 9
Tel. 035 967046 – Fax 035 967106
CENTRO DI PRODUZIONE:
25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125
Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

lunedì, rispetto a domenica); in pausa dalle 12.00 alle 13.00; in diminuzione a partire dalle 15.00 in poi.

- Si veda il seguente grafico, che confronta i valori LeqA orari di martedì 22 giugno (rumore ambientale) e domenica 20 giugno 2021 (rumore residuo):

Il contributo delle attività di cantiere, stimato cautelativamente in quanto sono compresi e non depurati tutti gli eventi sonori avvenuti nei periodi temporali confrontati, è stimato fino a + 7.0 dBA (differenza algebrica, comprensiva del contributo del fiume Seveso; il rumore idrico è maggiore martedì, rispetto a domenica); in pausa dalle 12.00 alle 13.00; in diminuzione a partire dalle 17.00 in poi.

Rapporto di cantiere LUNEDÌ 21 Giugno 2021 - MM - Vasca Volano torrente Seveso

Bacino di laminazione

- Continua lo scavo per bacino di laminazione
- Continua il trasporto di materiale a conferimento
- Continua posa di tessuto in TNT e HDPE a impermeabilizzazione del fondo vasca

CENTRO DI PRODUZIONE E MAGAZZINO:
24060 ROGNO (Bg) – Via Monte Grappa, 9
Tel. 035 967046 – Fax 035 967106
CENTRO DI PRODUZIONE:
25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125
Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

Manufatto di scarico in alveo

• Assemblaggio ferro soletta quota 140.60 manufatto di scarico e casseratura elevazione prima fase muro tipo C

Rapporto di cantiere MARTEDI' 22 Giugno 2021 – MM - Vasca Volano torrente Seveso

Bacino di laminazione

- Continua lo scavo per bacino di laminazione
- Continua il trasporto di materiale a conferimento
- Continua posa di tessuto in TNT e HDPE a impermeabilizzazione del fondo vasca
- Posa rete elettrosaldata fondo vasca

Manufatto di scarico in alveo

• Casseratura elevazione prima fase muro tipo C

IMPRESA DI COSTRUZIONI

SEDE LEGALE E AMMINISTRATIVA: 24060 ROGNO (Bg) - Via Rondinera, 17 Tel. 035 977477 - Fax 035 977468 E-mail: info@giudicispa.it PEC: giudicispa.info@legalmail.it

CENTRO DI PRODUZIONE E MAGAZZINO: 24060 ROGNO (Bg) – Via Monte Grappa, 9 Tel. 035 967046 – Fax 035 967106 CENTRO DI PRODUZIONE: 25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125 Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

REPORT MENSILE 72 h - CENTRALINA 2

Presso:	Famiglia De Regibus
Indirizzo:	Via Papa Giovanni XXIII 47
Piano:	VI
DA:	data: 20 giugno 2021 ora: 00.00
A:	data: 22 giugno 2021 ora: 23.00

INQUADRAMENTO TERRITORIALE

TR diurno: ³	TR notturno ⁴ :
LeqA: 55.2 dBA	LeqA: 43.6 dBA
L10: 57.4 dBA	L10: 46.9 dBA
L50: 53.7 dBA	L50: 40.0 dBA
L90: 50.3 dBA	L90: 38.2 dBA
L95: 49.4 dBA	L95: 38.0 dBA

LeqA ₁	48.9	LeqA ₂	47.9	LeqA ₃	45.3
LeqA ₄	43.6	LeqA ₅	45.1	LeqA ₆	48.2
LeqA ₇	48.9	LeqA ₈	48.2	LeqA ₉	50.3

³ Su intervallo temporale h. 14.00.00 22giu21.

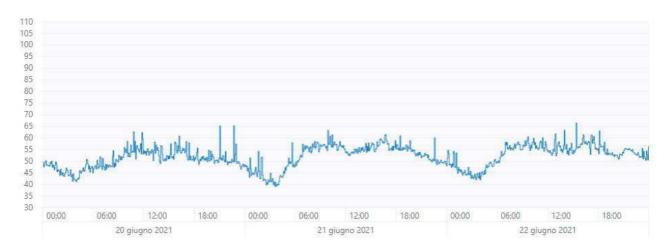
⁴ Su intervallo temporale h. 03.00.00 20giu21.

CENTRO DI PRODUZIONE E MAGAZZINO: 24060 ROGNO (Bg) – Via Monte Grappa, 9
Tel. 035 967046 – Fax 035 967106
CENTRO DI PRODUZIONE:
25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125
Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

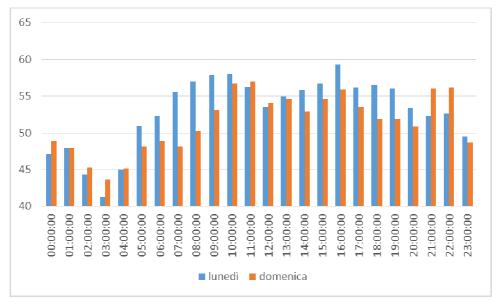
53.1	LeqA ₁₁	56.7	LeqA ₁₂	57.0
54.1	LeqA ₁₄	54.6	LeqA ₁₅	52.9
54.6	LeqA ₁₇	55.9	LeqA ₁₈	53.5
51.9	LeqA ₂₀	51.9	LeqA ₂₁	50.9
56.0	LeqA ₂₃	56.2	LeqA ₂₄	48.7
47.1	LeqA ₂₆	47.9	LeqA ₂₇	44.3
41.3	LeqA ₂₉	45.0	LeqA ₃₀	51.0
52.3	LeqA ₃₂	55.6	LeqA ₃₃	57.0
57.8	LeqA ₃₅	58.0	LeqA ₃₆	56.3
53.5	LeqA ₃₈	55.0	LeqA ₃₉	55.8
56.7	LeqA ₄₁	59.3	LeqA ₄₂	56.2
56.5	LeqA ₄₄	56.0	LeqA ₄₅	53.4
52.3	LeqA ₄₇	52.6	LeqA ₄₈	49.5
51.3	LeqA ₅₀	47.5	LeqA ₅₁	45.0
43.6	LeqA ₅₃	46.4	LeqA ₅₄	49.4
53.3	LeqA ₅₆	56.1	LeqA ₅₇	56.7
57.8	LeqA ₅₉	57.1	LeqA ₆₀	57.2
56.1	LeqA ₆₂	57.5	LeqA ₆₃	55.2
58.7	LeqA ₆₅	58.5	LeqA ₆₆	58.1
57.1	LeqA ₆₈	53.3	LeqA ₆₉	52.7
55.1	LeqA ₇₁	53.3	LeqA ₇₂	53.2
	54.1 54.6 51.9 56.0 47.1 41.3 52.3 57.8 53.5 56.7 56.5 52.3 51.3 43.6 53.3 57.8 56.1 58.7 57.1	54.1 LeqA ₁₄ 54.6 LeqA ₁₇ 51.9 LeqA ₂₀ 56.0 LeqA ₂₃ 47.1 LeqA ₂₆ 41.3 LeqA ₂₉ 52.3 LeqA ₃₂ 57.8 LeqA ₃₅ 53.5 LeqA ₃₈ 56.7 LeqA ₄₁ 56.5 LeqA ₄₁ 56.5 LeqA ₄₇ 51.3 LeqA ₅₀ 43.6 LeqA ₅₀ 57.8 LeqA ₅₉ 56.1 LeqA ₆₂ 58.7 LeqA ₆₅ 57.1 LeqA ₆₈	54.1 LeqA ₁₄ 54.6 54.6 LeqA ₁₇ 55.9 51.9 LeqA ₂₀ 51.9 56.0 LeqA ₂₃ 56.2 47.1 LeqA ₂₆ 47.9 41.3 LeqA ₂₉ 45.0 52.3 LeqA ₃₂ 55.6 57.8 LeqA ₃₅ 58.0 53.5 LeqA ₃₈ 55.0 56.7 LeqA ₃₈ 55.0 56.7 LeqA ₄₁ 59.3 56.5 LeqA ₄₁ 59.3 56.5 LeqA ₄₄ 56.0 52.3 LeqA ₄₇ 52.6 51.3 LeqA ₅₀ 47.5 43.6 LeqA ₅₀ 47.5 43.6 LeqA ₅₀ 56.1 57.8 LeqA ₅₉ 57.1 56.1 LeqA ₆₂ 57.5 58.7 LeqA ₆₈ 53.3	54.1 LeqA ₁₄ 54.6 LeqA ₁₅ 54.6 LeqA ₁₇ 55.9 LeqA ₁₈ 51.9 LeqA ₂₀ 51.9 LeqA ₂₁ 56.0 LeqA ₂₃ 56.2 LeqA ₂₄ 47.1 LeqA ₂₆ 47.9 LeqA ₂₇ 41.3 LeqA ₂₉ 45.0 LeqA ₃₀ 52.3 LeqA ₃₂ 55.6 LeqA ₃₀ 57.8 LeqA ₃₂ 55.6 LeqA ₃₆ 53.5 LeqA ₃₈ 55.0 LeqA ₃₉ 56.7 LeqA ₄₁ 59.3 LeqA ₄₂ 56.5 LeqA ₄₁ 59.3 LeqA ₄₂ 56.5 LeqA ₄₄ 56.0 LeqA ₄₅ 52.3 LeqA ₄₄ 56.0 LeqA ₄₅ 52.3 LeqA ₄₇ 52.6 LeqA ₄₈ 51.3 LeqA ₅₀ 47.5 LeqA ₅₁ 43.6 LeqA ₅₃ 46.4 LeqA ₅₄ 53.3 LeqA ₅₀ 56.1 LeqA ₅₀ 57.8 LeqA ₆₅ 58.5 <t< td=""></t<>

RAPPRESENTAZIONE GRAFICA DELLE MISURE:

Grafico t [s] / SPL (A, fast) [dBA]

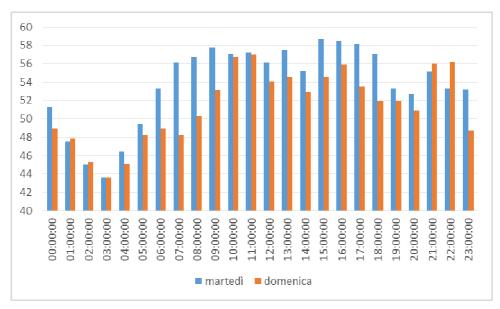


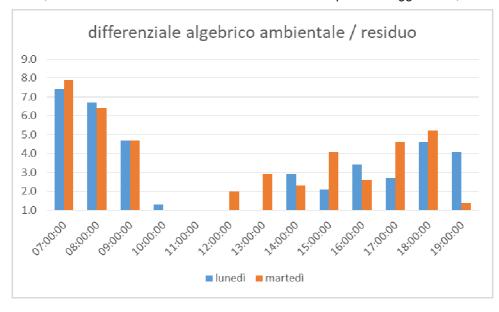
SEDE LEGALE E AMMINISTRATIVA: 24060 ROGNO (Bg) – Via Rondinera, 17 Tel. 035 977477 – Fax 035 977468


E-mail: info@giudicispa.it PEC: giudicispa.info@legalmail.it CENTRO DI PRODUZIONE E MAGAZZINO: 24060 ROGNO (Bg) – Via Monte Grappa, 9
Tel. 035 967046 – Fax 035 967106
CENTRO DI PRODUZIONE: 25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125
Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

Osservazioni:

- Sono presenti superamenti di limite di immissione per la classe di appartenenza durante le ore "di punta" (primo mattino), attribuibili al traffico stradale locale.
- Si vedano i seguenti grafici, che confrontano i valori LeqA orari di lunedì 21 giugno e martedì 22 giugno (rumore ambientale) con quelli di domenica 20 giugno 2021 (rumore residuo):




CENTRO DI PRODUZIONE E MAGAZZINO:
24060 ROGNO (Bg) – Via Monte Grappa, 9
Tel. 035 967046 – Fax 035 967106
CENTRO DI PRODUZIONE:
25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125
Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

Confrontando le due giornate, si osservano gli aumenti dei contributi sonori del traffico autoveicolare di prima mattina, dalle 05.00 alle 09.00, mentre altre variazioni giornaliere appaiono non correlabili al cantiere (che nelle due giornate ha avuto attività molto simili).

Infatti, confrontando i differenziali lun-dom e mar-dom quando maggiori di 1,0 dBA:

CENTRO DI PRODUZIONE E MAGAZZINO: 24060 ROGNO (Bg) – Via Monte Grappa, 9 Tel. 035 967046 – Fax 035 967106 CENTRO DI PRODUZIONE: 25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125 Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

- fino alle 09.00 del mattino sono gli stessi (questa fascia oraria è caratterizzata dalla rumorosità del traffico stradale);
- in altre fasce orarie, sono risultati maggiori il lunedì o il martedì, senza possibili spiegazioni (il cantiere nelle due giornate ha avuto attività molto simili); questo contributo (che contiene tutti i rumori, compreso il cantiere) è contenuto sotto ai 5 dBA, che è il limite differenziale di immissione in periodo diurno.

Rapporto di cantiere LUNEDÌ 21 Giugno 2021 - MM - Vasca Volano torrente Seveso

Bacino di laminazione

- Continua lo scavo per bacino di laminazione
- Continua il trasporto di materiale a conferimento
- Continua posa di tessuto in TNT e HDPE a impermeabilizzazione del fondo vasca

Manufatto di scarico in alveo

• Assemblaggio ferro soletta quota 140.60 manufatto di scarico e casseratura elevazione prima fase muro tipo C

Rapporto di cantiere MARTEDI' 22 Giugno 2021 – MM - Vasca Volano torrente Seveso

Bacino di laminazione

- Continua lo scavo per bacino di laminazione
- Continua il trasporto di materiale a conferimento
- Continua posa di tessuto in TNT e HDPE a impermeabilizzazione del fondo vasca
- Posa rete elettrosaldata fondo vasca

Manufatto di scarico in alveo

Casseratura elevazione prima fase muro tipo C

11 ALLEGATO 5 - RUMORE 18-20/07/2021

CENTRO DI PRODUZIONE E MAGAZZINO:
24060 ROGNO (Bg) – Via Monte Grappa, 9
Tel. 035 967046 – Fax 035 967106
CENTRO DI PRODUZIONE:
25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125
Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

Committente: MM SPA

<u>Cantiere</u>: lavori per la costruzione di una vasca di contenimento delle piene del Seveso

Milano (MI)

Ingresso cantiere: Piazzale Martiri della Deportazione

PGRUM - Piano di Gestione Integrata del Rumore di Cantiere

(Norma UNI 11728:2018)

MODULO 6: RISULTATI DEI MONITORAGGI ACUSTICI IN CONTINUO

Revisione MODULO	Data	Descrizione	Redazione PGRUM	Approvazione PGRUM
0	2/11/2020	Deliverable PGRUM dell'ambito: MONITORAGGIO ACUSTICO DEL CANTIERE - Prima stesura - PGRUM revl 2nov MODULO 6.docx	Consulente TCA Enteca 2084 Silvia Quatrini	Responsabile Attuazione PGRUM Lorenzo Rocchini

CENTRO DI PRODUZIONE E MAGAZZINO: 24060 ROGNO (Bg) – Via Monte Grappa, 9 Tel. 035 967046 – Fax 035 967106 CENTRO DI PRODUZIONE: 25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125 Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

REPORT MENSILE 72 h - CENTRALINA 1

EOTOGD A FILA DELLA GENTONALINA	T_	D
FOTOGRAFIA DELLA CENTRALINA	Presso:	Perimetro condominio ex Aler
	Indirizzo:	Via Papa Giovanni XXIII 103/106
	Piano:	Bresso - h 3,5 m
	DA:	data: 18 luglio 2021 ora: 00.00
	A:	data: 20 luglio 2021 ora: 23.00
	INQUADI	RAMENTO TERRITORIALE
45°31'44.7"N 9°11'14.3"E 45.529071, 9.187304		Merceline del lucito 2/15 del
TR diurno: ¹	TR notturi	no ² :
LeqA: 56.3 dBA	LeqA:	46.9 dBA
L10: 59.1 dBA	L10:	47.1 dBA
L50: 52.5 dBA	L50:	46.9 dBA
L90: 46.3 dBA	L90:	46.8 dBA
L95: 45.5 dBA	L95:	46.7 dBA

LeqA ₁	48.5	LeqA ₂	48.2	LeqA ₃	47.6
LeqA ₄	46.9	LeqA ₅	46.8	LeqA ₆	47.0
LeqA ₇	47.0	LeqA ₈	47.2	LeqA ₉	51.3

¹ Su intervallo temporale h. 14.00.00 20lug21.

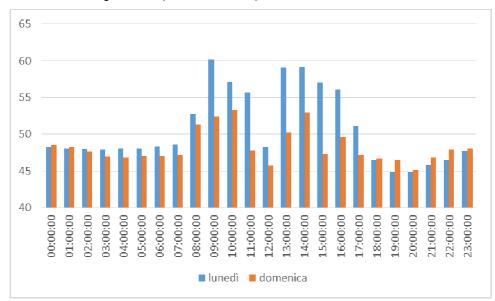
² Su intervallo temporale h. 03.00.00 18lug21.

CENTRO DI PRODUZIONE E MAGAZZINO: 24060 ROGNO (Bg) – Via Monte Grappa, 9
Tel. 035 967046 – Fax 035 967106
CENTRO DI PRODUZIONE:
25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125
Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

LeqA ₁₀	52.4	LeqA ₁₁	53.3	LeqA ₁₂	47.8
LeqA ₁₃	45.7	LeqA ₁₄	50.2	LeqA ₁₅	52.9
LeqA ₁₆	47.3	LeqA ₁₇	49.6	LeqA ₁₈	47.2
LeqA ₁₉	46.7	LeqA ₂₀	46.5	LeqA ₂₁	45.1
LeqA ₂₂	46.8	LeqA ₂₃	47.9	LeqA ₂₄	48.1
LeqA ₂₅	48.2	LeqA ₂₆	48.1	LeqA ₂₇	48.0
LeqA ₂₈	47.9	LeqA ₂₉	48.1	LeqA ₃₀	48.1
LeqA ₃₁	48.3	LeqA ₃₂	48.6	LeqA ₃₃	52.8
LeqA ₃₄	60.2	LeqA ₃₅	57.1	LeqA ₃₆	55.6
LeqA ₃₇	48.2	LeqA ₃₈	59.0	LeqA ₃₉	59.1
LeqA ₄₀	57.0	LeqA ₄₁	56.1	LeqA ₄₂	51.1
LeqA ₄₃	46.5	LeqA ₄₄	44.8	LeqA ₄₅	44.8
LeqA ₄₆	45.8	LeqA ₄₇	46.5	LeqA ₄₈	47.7
LeqA ₄₉	47.8	LeqA ₅₀	47.6	LeqA ₅₁	47.4
LeqA ₅₂	47.4	LeqA ₅₃	47.7	LeqA ₅₄	48.1
LeqA ₅₅	48.6	LeqA ₅₆	51.8	LeqA ₅₇	61.9
LeqA ₅₈	59.9	LeqA ₅₉	58.3	LeqA ₆₀	63.5
LeqA ₆₁	47.2	LeqA ₆₂	55.4	LeqA ₆₃	56.3
LeqA ₆₄	56.6	LeqA ₆₅	55.3	LeqA ₆₆	54.4
LeqA ₆₇	48.7	LeqA ₆₈	49.6	LeqA ₆₉	44.7
LeqA ₇₀	45.2	LeqA ₇₁	49.9	LeqA ₇₂	48.0

RAPPRESENTAZIONE GRAFICA DELLE MISURE:

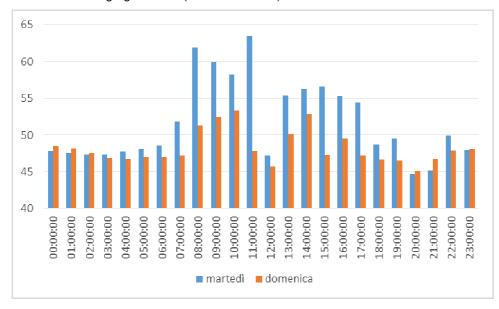

- Grafico t [s] / SPL (A, fast) [dBA]


CENTRO DI PRODUZIONE E MAGAZZINO:
24060 ROGNO (Bg) – Via Monte Grappa, 9
Tel. 035 967046 – Fax 035 967106
CENTRO DI PRODUZIONE:
25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125
Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

Osservazioni:

- La rumorosità del fiume Seveso è la causa dei superamenti dei limiti assoluti di immissione notturni
- Si veda il seguente grafico, che confronta i valori LeqA orari di lunedì 19 luglio (rumore ambientale) e domenica 18 luglio 2021 (rumore residuo):

Il contributo delle attività di cantiere, stimato cautelativamente in quanto sono compresi e non depurati tutti gli eventi sonori avvenuti nei periodi temporali confrontati, è valutato fino a + 9.0 dBA (differenza algebrica).



CENTRO DI PRODUZIONE E MAGAZZINO:
24060 ROGNO (Bg) – Via Monte Grappa, 9
Tel. 035 967046 – Fax 035 967106
CENTRO DI PRODUZIONE:
25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125
Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

- Si veda il seguente grafico, che confronta i valori LeqA orari di martedì 20 luglio (rumore ambientale) e domenica 18 giugno 2021 (rumore residuo):

Il contributo delle attività di cantiere, stimato cautelativamente in quanto sono compresi e non depurati tutti gli eventi sonori avvenuti nei periodi temporali confrontati, è stimato fino a + 12.0 dBA (differenza algebrica).

Rapporto di cantiere LUNEDÌ 19 Luglio 2021 – MM - Vasca Volano torrente Seveso

Bacino di laminazione

• Assemblaggio ferro e casseratura (concio 1) platea di fondo vasca area Nord

Manufatto di presa

• Getto magrone sez tra B-B e E-E e casseratura e getto elevazione sez. H-H sponda DX e SX torrente Seveso

Manufatto di scarico in alveo

Nessuna attività

CENTRO DI PRODUZIONE E MAGAZZINO: 24060 ROGNO (Bg) – Via Monte Grappa, 9 Tel. 035 967046 – Fax 035 967106 CENTRO DI PRODUZIONE: 25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125 Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

Impianto pozzi e alimentazione invaso

Nessuna attività

Riqualificazione sponde e fondo alveo T. Seveso

• Posa di geocomposito a rivestimento di scarpata in terra sponda sinistra torrente Seveso

Rapporto di cantiere MARTEDÌ 20 Luglio 2021 – MM - Vasca Volano torrente Seveso

Bacino di laminazione

Assemblaggio ferro e casseratura (concio 1) platea di fondo vasca area nord

Manufatto di presa

 Disarmo elevazione sez H-H sponda DX torrente Seveso e assemblaggio ferro fondione tra sez BB ed EE manufatto di presa

Manufatto di scarico in alveo

• Rinterro muro C e muro B a quota 136 slm

Impianto pozzi e alimentazione invaso

Nessuna attività

Riqualificazione sponde e fondo alveo T. Seveso

• Posa di geocomposito a rivestimento di scarpata in terra sponda sinistra torrente Seveso

IMPRESA DI COSTRUZIONI

SEDE LEGALE E AMMINISTRATIVA: 24060 ROGNO (Bg) - Via Rondinera, 17 Tel. 035 977477 - Fax 035 977468 E-mail: info@giudicispa.it PEC: giudicispa.info@legalmail.it

CENTRO DI PRODUZIONE E MAGAZZINO: 24060 ROGNO (Bg) – Via Monte Grappa, 9 Tel. 035 967046 – Fax 035 967106 CENTRO DI PRODUZIONE: 25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125 Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

REPORT MENSILE 72 h - CENTRALINA 2

Presso:	Famiglia De Regibus
Indirizzo:	Via Papa Giovanni XXIII 47
Piano:	VI
DA:	data: 18 luglio 2021 ora: 00.00
A:	data: 20 luglio 2021 ora: 23.00

INQUADRAMENTO TERRITORIALE

TR diurno: ³	TR notturno ⁴ :
LeqA: 56.1 dBA	LeqA: 43.9 dBA
L10: 59.1 dBA	L10: 47.9 dBA
L50: 53.4 dBA	L50: 41.0 dBA
L90: 49.3 dBA	L90: 37.3 dBA
L95: 48.2 dBA	L95: 36.9 dBA

LeqA ₁	48.2	LeqA ₂	46.7	LeqA ₃	46.2
LeqA ₄	43.9	LeqA ₅	42.8	LeqA ₆	46.1
LeqA ₇	47.1	LeqA ₈	47.1	LeqA ₉	48.1

³ Su intervallo temporale h. 14.00.00 20lug21.

⁴ Su intervallo temporale h. 03.00.00 18lug21.

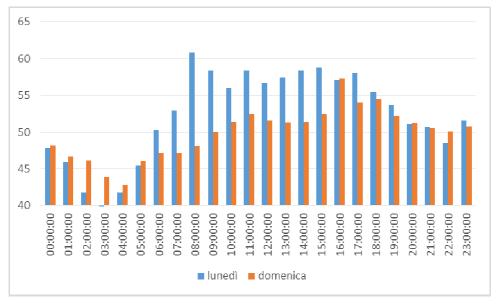
CENTRO DI PRODUZIONE E MAGAZZINO: 24060 ROGNO (Bg) – Via Monte Grappa, 9
Tel. 035 967046 – Fax 035 967106
CENTRO DI PRODUZIONE:
25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125
Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

LeqA ₁₀	50.0	LeqA ₁₁	51.4	LeqA ₁₂	52.4
LeqA ₁₃	51.6	LeqA ₁₄	51.3	LeqA ₁₅	51.4
LeqA ₁₆	52.4	LeqA ₁₇	57.3	LeqA ₁₈	54.0
LeqA ₁₉	54.5	LeqA ₂₀	52.2	LeqA ₂₁	51.2
LeqA ₂₂	50.5	LeqA ₂₃	50.1	LeqA ₂₄	50.8
LeqA ₂₅	47.8	LeqA ₂₆	45.9	LeqA ₂₇	41.8
LeqA ₂₈	39.8	LeqA ₂₉	41.8	LeqA ₃₀	45.5
LeqA ₃₁	50.3	LeqA ₃₂	53.0	LeqA ₃₃	60.8
LeqA ₃₄	58.4	LeqA ₃₅	56.0	LeqA ₃₆	58.4
LeqA ₃₇	56.7	LeqA ₃₈	57.4	LeqA ₃₉	58.4
LeqA ₄₀	58.8	LeqA ₄₁	57.1	LeqA ₄₂	58.0
LeqA ₄₃	55.5	LeqA ₄₄	53.7	LeqA ₄₅	51.1
LeqA ₄₆	50.7	LeqA ₄₇	48.5	LeqA ₄₈	51.6
LeqA ₄₉	46.4	LeqA ₅₀	44.0	LeqA ₅₁	42.3
LeqA ₅₂	42.2	LeqA ₅₃	43.2	LeqA ₅₄	46.9
LeqA ₅₅	51.4	LeqA ₅₆	54.7	LeqA ₅₇	56.3
LeqA ₅₈	55.4	LeqA ₅₉	55.6	LeqA ₆₀	55.9
LeqA ₆₁	55.8	LeqA ₆₂	57.2	LeqA ₆₃	56.1
LeqA ₆₄	55.2	LeqA ₆₅	55.1	LeqA ₆₆	55.3
LeqA ₆₇	58.8	LeqA ₆₈	57.8	LeqA ₆₉	51.7
LeqA ₇₀	52.4	LeqA ₇₁	53.5	LeqA ₇₂	54.6

RAPPRESENTAZIONE GRAFICA DELLE MISURE:

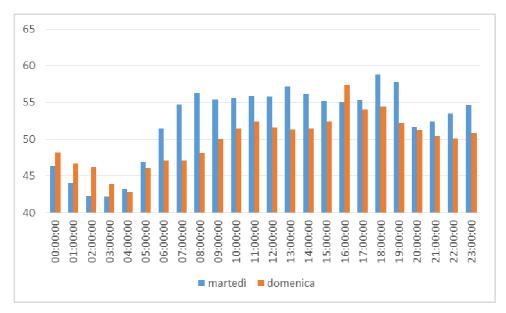
- Grafico t [s] / SPL (A, fast) [dBA]

SEDE LEGALE E AMMINISTRATIVA: 24060 ROGNO (Bg) – Via Rondinera, 17 Tel. 035 977477 – Fax 035 977468 F-mail: info@giudicisna it


E-mail: info@giudicispa.it PEC: giudicispa.info@legalmail.it CENTRO DI PRODUZIONE E MAGAZZINO:
24060 ROGNO (Bg) – Via Monte Grappa, 9
Tel. 035 967046 – Fax 035 967106
CENTRO DI PRODUZIONE:
25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125
Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

Osservazioni:

- Sono presenti superamenti di limite di immissione per la classe di appartenenza durante le ore "di punta" (primo mattino), attribuibili al traffico stradale locale.
- Si vedano i seguenti grafici, che confrontano i valori LeqA orari di lunedì 19 luglio e martedì 20 luglio (rumore ambientale) con quelli di domenica 18 luglio 2021 (rumore residuo):



CENTRO DI PRODUZIONE E MAGAZZINO: 24060 ROGNO (Bg) – Via Monte Grappa, 9 Tel. 035 967046 – Fax 035 967106 CENTRO DI PRODUZIONE: 25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125 Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

Confrontando le due giornate, si osservano gli aumenti dei contributi sonori del traffico autoveicolare di prima mattina, dalle 05.00 alle 09.00, mentre altre variazioni giornaliere non sono direttamente correlabili al cantiere (per esempio non si evidenzia la pausa pranzo); anzi, la giornata di lunedì appare più rumorosa di quella di martedì, che invece ha avuto più attività (es.: reinterri).

Rapporto di cantiere LUNEDÌ 19 Luglio 2021 – MM - Vasca Volano torrente Seveso

Bacino di laminazione

Assemblaggio ferro e casseratura (concio 1) platea di fondo vasca area Nord

Manufatto di presa

• Getto magrone sez tra B-B e E-E e casseratura e getto elevazione sez. H-H sponda DX e SX torrente Seveso

Manufatto di scarico in alveo

Nessuna attività

Impianto pozzi e alimentazione invaso

Nessuna attività

SEDE LEGALE E AMMINISTRATIVA: 24060 ROGNO (Bg) – Via Rondinera, 17 Tel. 035 977477 – Fax 035 977468 E-mail: info@giudicispa.it PEC: giudicispa.info@legalmail.it CENTRO DI PRODUZIONE E MAGAZZINO: 24060 ROGNO (Bg) – Via Monte Grappa, 9 Tel. 035 967046 – Fax 035 967106 CENTRO DI PRODUZIONE: 25046 CAZZAGO S. MARTINO (BS) – Via Caduti, 125 Tel.: 030 7731627 – E-mail: impiantocazzago@giudicispa.it

Riqualificazione sponde e fondo alveo T. Seveso

• Posa di geocomposito a rivestimento di scarpata in terra sponda sinistra torrente Seveso

Rapporto di cantiere MARTEDÌ 20 Luglio 2021 – MM - Vasca Volano torrente Seveso

Bacino di laminazione

Assemblaggio ferro e casseratura (concio 1) platea di fondo vasca area nord

Manufatto di presa

 Disarmo elevazione sez H-H sponda DX torrente Seveso e assemblaggio ferro fondione tra sez BB ed EE manufatto di presa

Manufatto di scarico in alveo

• Rinterro muro C e muro B a quota 136 slm

Impianto pozzi e alimentazione invaso

Nessuna attività

Riqualificazione sponde e fondo alveo T. Seveso

• Posa di geocomposito a rivestimento di scarpata in terra sponda sinistra torrente Seveso

12 ALLEGATO 6 - ATMOSFERA 14/06/2021 - 25/07/2021

a 9mwhth[lm! b! a l[! b9{9{t!

w9t hw¤ a hb L¤hw! DDLh 59[[! v - ! [L¤# 59[[彙wL! { ሲኒ ተር፣ አኒ ነጋር የሚኒ ነጋር የሚ

b9Æ9/h {w[

t τ↑¶XδIX

14 giugno - 20 giugno 2021

Ubicazione:	Milano	Periodo di misura	dal 14/06/2021 al 20/06/2021
Località	Via Papa Giovanni XXIII, 97	Numero di giorni di registrazione	7
Codice Stazione	P1	Strumentazione	COMDE DERENDA APM-2

Media Giornaliera PM10 (Limite 50 μg/m3)

Giorno	PM10 μg/m3
14/06/2021	17,52
15/06/2021	11,83
16/06/2021	24,06
17/06/2021	27,11
18/06/2021	17,32
19/06/2021	11,89
20/06/2021	15,74

Periodo	PM2,5 μg/m3
14-20 giugno	13,06

Giorno	PM2.5 μg/m3
14/06/2021	14,13
15/06/2021	8,81
16/06/2021	17,86
17/06/2021	20,49
18/06/2021	12,75
19/06/2021	8,38
20/06/2021	9,02

^{*} Le celle evidenziate in colore grigio si riferiscono a giorni in cui la piovosità giornaliera cumulata è maggiore di 1 mm (dati stazione meteo ARPA di Cinisello Balsamo Parco Nord)

METROPOLITANA MILANESE SPA

REPORT MONITORAGGIO DELLA QUALITÀ DELL'ARIA

Stazione Via Papa Giovanni XXIII

Report n. 10/2021

NEXTECO SRL

Periodo

21 giugno - 27 giugno 2021

Ubicazione:	Milano	Periodo di misura	dal 21/06/2021 al 27/06/2021
Località	Via Papa Giovanni XXIII, 97	Numero di giorni di registrazione	7
Codice Stazione	P1	Strumentazione	COMDE DERENDA APM-2

Media Giornaliera PM10 (Limite 50 μg/m3)

Giorno	PM10 μg/m3
21/06/2021	23,70
22/06/2021	11,14
23/06/2021	9,37
24/06/2021	8,15
25/06/2021	5,22
26/06/2021	6,74
27/06/2021	10,89

Periodo	PM2,5 μg/m3
21-27 giugno	6,38

Giorno	PM2.5 μg/m3
21/06/2021	9,95
22/06/2021	6,07
23/06/2021	6,53
24/06/2021	5,25
25/06/2021	3,23
26/06/2021	4,80
27/06/2021	8,85

^{*} Le celle evidenziate in colore grigio si riferiscono a giorni in cui la piovosità giornaliera cumulata è maggiore di 1 mm (dati stazione meteo ARPA di Cinisello Balsamo Parco Nord)

METROPOLITANA MILANESE SPA

REPORT MONITORAGGIO DELLA QUALITÁ DELL'ARIA

Stazione Via Papa Giovanni XXIII

Report n. 11/2021

NEXTECO SRL

Periodo 28 giugno - 04 luglio 2021

Ubicazione:	Milano	Periodo di misura	dal 28/06/2021 al 04/07/2021
Località	Via Papa Giovanni XXIII, 97	Numero di giorni di registrazione	7
Codice Stazione	P1	Strumentazione	COMDE DERENDA APM-2

Media Giornaliera PM10 (Limite 50 μg/m3)

Giorno	PM10 μg/m3
28/06/2021	11,91
29/06/2021	10,75
30/06/2021	11,47
01/07/2021	7,30
02/07/2021	7,83
03/07/2021	10,62
04/07/2021	12,33

Periodo	PM2,5 μg/m3
28 giu - 04 lug	6,97

Giorno	PM2.5 μg/m3
28/06/2021	9,50
29/06/2021	6,83
30/06/2021	8,06
01/07/2021	3,54
02/07/2021	5,39
03/07/2021	8,21
04/07/2021	10,72

^{*} Le celle evidenziate in colore grigio si riferiscono a giorni in cui la piovosità giornaliera cumulata è maggiore di 1 mm (dati stazione meteo ARPA di Cinisello Balsamo Parco Nord)

METROPOLITANA MILANESE SPA

REPORT MONITORAGGIO DELLA QUALITÀ DELL'ARIA

Stazione Via Papa Giovanni XXIII

Report n. 12/2021

NEXTECO SRL

Periodo 05 luglio - 11 luglio 2021

Ubicazione:	Milano	Periodo di misura	dal 05/07/2021 al 11/07/2021
Località	Via Papa Giovanni XXIII, 97	Numero di giorni di registrazione	7
Codice Stazione	P1	Strumentazione	COMDE DERENDA APM-2

Media Giornaliera PM10 (Limite 50 μg/m3)

Giorno	PM10 μg/m3
05/07/2021	8,06
06/07/2021	6,83
07/07/2021	11,66
08/07/2021	8,36
09/07/2021	2,22
10/07/2021	4,99
11/07/2021	5,12

Periodo	PM2,5 μg/m3
05-11 luglio	5,24

Giorno	PM2.5 μg/m3
05/07/2021	6,62
06/07/2021	5,48
07/07/2021	9,19
08/07/2021	6,62
09/07/2021	1,07
10/07/2021	3,60
11/07/2021	4,12

^{*} Le celle evidenziate in colore grigio si riferiscono a giorni in cui la piovosità giornaliera cumulata è maggiore di 1 mm (dati stazione meteo ARPA di Cinisello Balsamo Parco Nord)

METROPOLITANA MILANESE SPA

REPORT MONITORAGGIO DELLA QUALITÁ DELL'ARIA

Stazione Via Papa Giovanni XXIII

Report n. 13/2021

NEXTECO SRL

Periodo 12 luglio - 18 luglio 2021

Ubicazione:	Milano	Periodo di misura	dal 11/07/2021 al 18/07/2021
Località	Via Papa Giovanni XXIII, 97	Numero di giorni di registrazione	7
Codice Stazione	P1	Strumentazione	COMDE DERENDA APM-2

Media Giornaliera PM10 (Limite 50 μg/m3)

Giorno	PM10 μg/m3
12/07/2021	12,43
13/07/2021	10,79
14/07/2021	7,63
15/07/2021	6,76
16/07/2021	7,64
17/07/2021	7,96
18/07/2021	12,11

Periodo	PM2,5 μg/m3
12-18 luglio	7,43

Giorno	PM2.5 μg/m3
12/07/2021	10,45
13/07/2021	8,47
14/07/2021	5,77
15/07/2021	4,66
16/07/2021	5,88
17/07/2021	6,43
18/07/2021	10,35

^{*} Le celle evidenziate in colore grigio si riferiscono a giorni in cui la piovosità giornaliera cumulata è maggiore di 1 mm (dati stazione meteo ARPA di Cinisello Balsamo Parco Nord)

METROPOLITANA MILANESE SPA

REPORT MONITORAGGIO DELLA QUALITÁ DELL'ARIA

Stazione Via Papa Giovanni XXIII

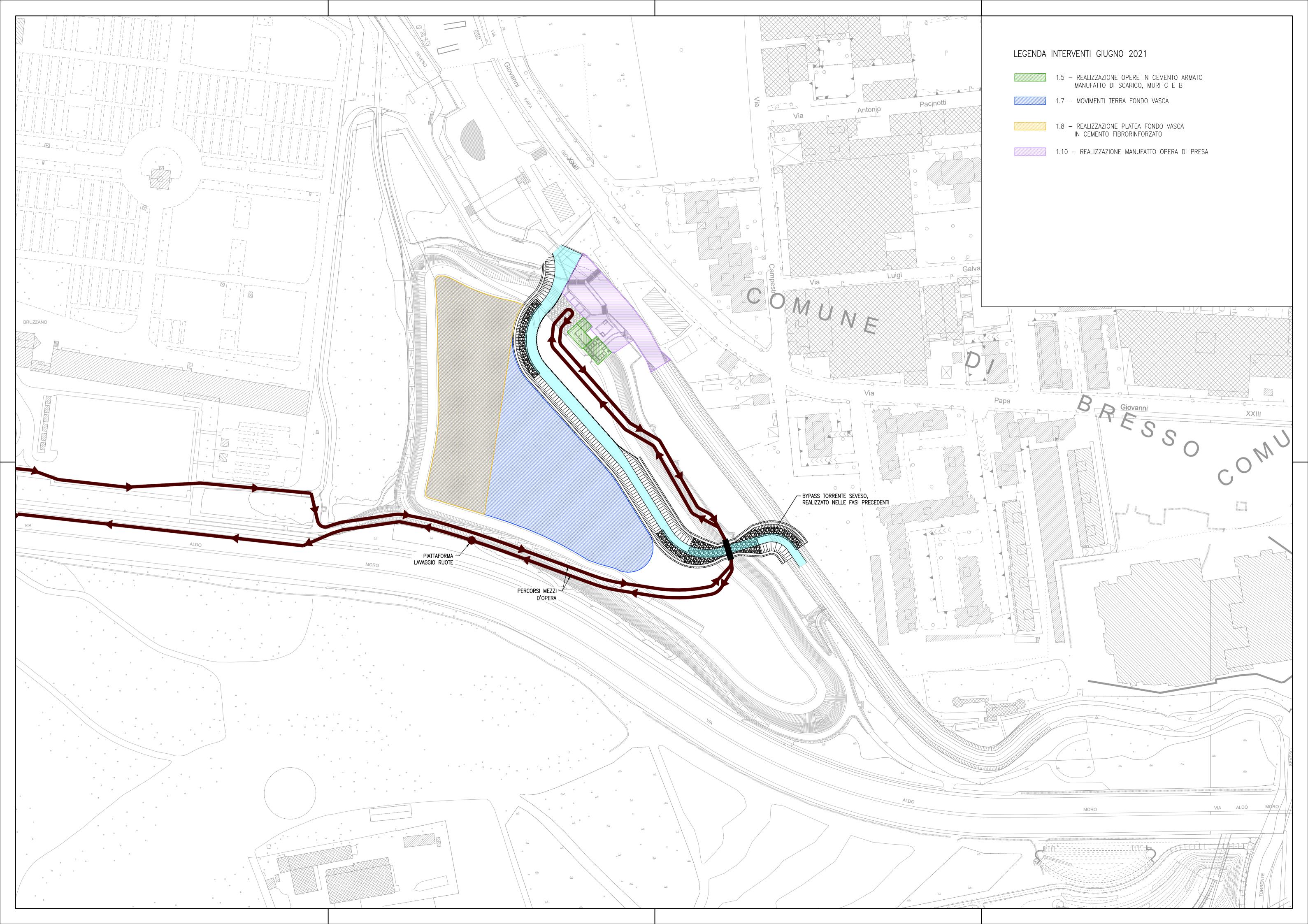
Report n. 14/2021

NEXTECO SRL

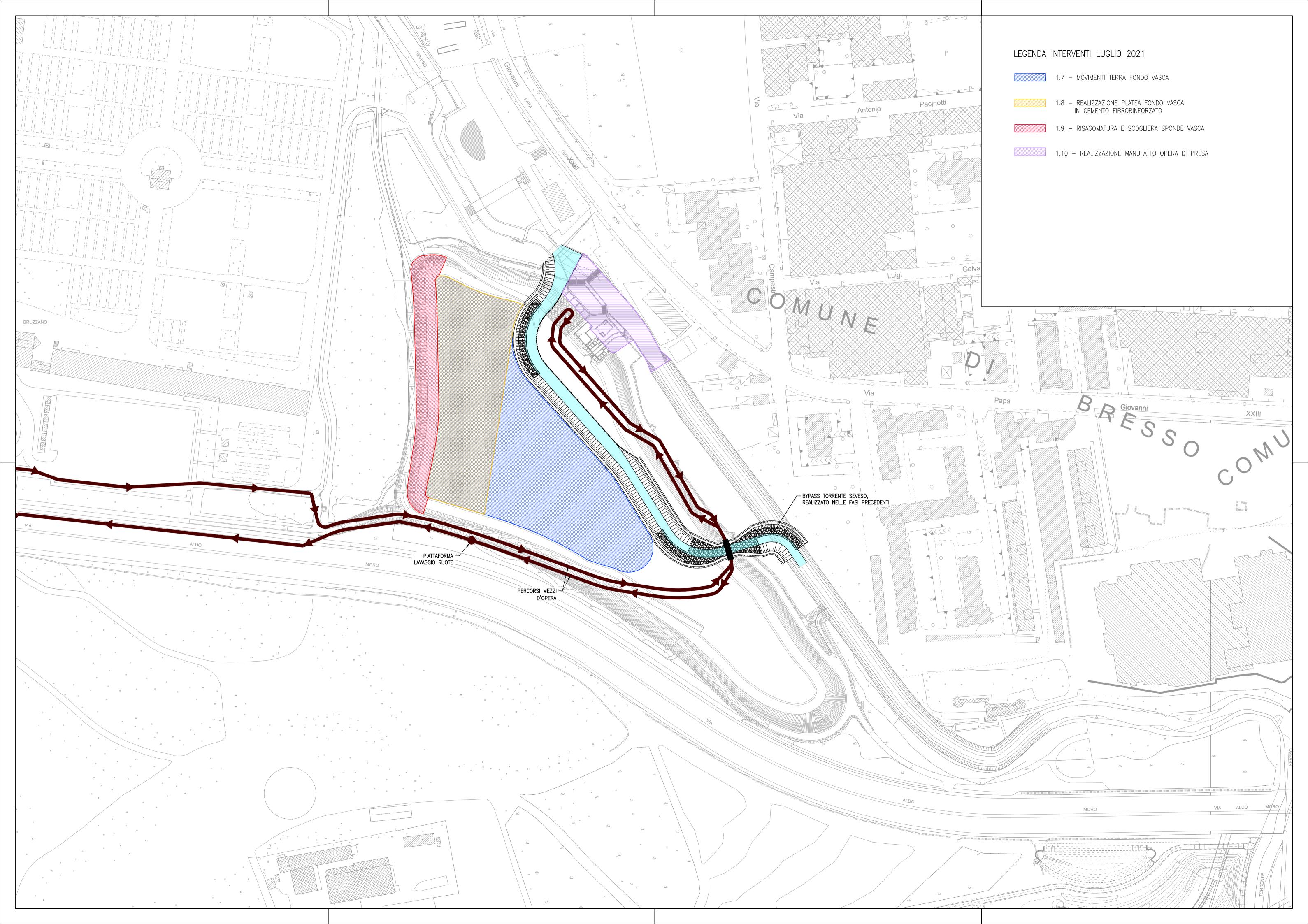
Periodo 19 luglio - 25 luglio 2021

Ubicazione:	Milano	Periodo di misura	dal 19/07/2021 al 25/07/2021
Località	Via Papa Giovanni XXIII, 97	Numero di giorni di registrazione	7
Codice Stazione	P1	Strumentazione	COMDE DERENDA APM-2

Media Giornaliera PM10 (Limite 50 μg/m3)


Giorno	PM10 μg/m3
19/07/2021	9,89
20/07/2021	10,58
21/07/2021	12,27
22/07/2021	13,32
23/07/2021	12,04
24/07/2021	18,28
25/07/2021	14,83

Periodo	PM2,5 μg/m3
19-25 luglio	10,78


Giorno	PM2.5 μg/m3
19/07/2021	7,89
20/07/2021	8,49
21/07/2021	9,88
22/07/2021	10,97
23/07/2021	10,14
24/07/2021	15,68
25/07/2021	12,39

^{*} Le celle evidenziate in colore grigio si riferiscono a giorni in cui la piovosità giornaliera cumulata è maggiore di 1 mm (dati stazione meteo ARPA di Cinisello Balsamo Parco Nord)

13 ALLEGATO 7 - PLANIMETRIA LAVORAZIONI GIUGNO 2021

14 ALLEGATO 8 - PLANIMETRIA LAVORAZIONI LUGLIO 2021

15 ALLEGATO 9 - REGISTRO BAGNATURE GIUGNO 2021

Cantiere CT000-AREA DI LAMINAZIONE TORRENTE SEVESO CONTABILITA' LAVORI MESSA IN SICUREZZA CANTIERE GIUGNO 2021											
GIUGNO		Impianto fisso bagnature abbattimento polveri utilizzato all'occorrenza secondo le esigenze di cantiere		х							
01/06/2021	SERENO	abbattimento polveri con autobotte		5,00							
02/06/2021		nessuna attività									
03/06/2021	SERENO	abbattimento polveri con autobotte		4,00							
04/06/2021	SERENO	abbattimento polveri con autobotte		6,00							
05/06/2021		nessuna attività									
06/06/2021		nessuna attività									
06/06/2021	PIOGGIA	abbattimento polveri con autobotte		-							
07/06/2021	PIOGGIA	abbattimento polveri con autobotte		-							
08/06/2021	SERENO	abbattimento polveri con autobotte		5,00							
09/06/2021	SERENO	abbattimento polveri con autobotte		6,00							
10/06/2021	SERENO	abbattimento polveri con autobotte		5,00							
11/06/2021	SERENO	abbattimento polveri con autobotte		8,00							
12/06/2021		nessuna attività									
13/06/2021		nessuna attività									
14/06/2021	SERENO	abbattimento polveri con autobotte		6,00							
15/06/2021	SERENO	abbattimento polveri con autobotte		7,00							
16/06/2021	SERENO	abbattimento polveri con autobotte		6,00							
17/06/2021	SERENO	abbattimento polveri con autobotte		4,00							
18/06/2021	SERENO	abbattimento polveri con autobotte		5,00							
19/06/2021		nessuna attività									
20/06/2021		nessuna attività									
21/06/2021	SERENO	abbattimento polveri con autobotte		6,00							
23/06/2021	SERENO	abbattimento polveri con autobotte		4,00							
23/06/2021	SERENO	abbattimento polveri con autobotte		4,00							
24/06/2021	SERENO	abbattimento polveri con autobotte		7,00							
25/06/2021	SERENO	abbattimento polveri con autobotte		8,00							
26/06/2021		nessuna attività									
27/06/2021		nessuna attività									
28/06/2021	SERENO	abbattimento polveri con autobotte		8,00							
29/06/2021	SERENO	abbattimento polveri con autobotte		8,00							
30/06/2021	SERENO	abbattimento polveri con autobotte		6,00							

16 ALLEGATO 10 - REGISTRO BAGNATURE LUGLIO 2021

Cantiere CT000-AREA DI LAMINAZIONE TORRENTE SEVESO											
CONTABILITA' LAVORI MESSA IN SICUREZZA CANTIERE LUGLIO 2021											
Data	Meteo	Voce lavorazione	persone	ore	ml	mq	cad				
LUGLIO		Impianto fisso bagnature abbattimento polveri utilizzato all'occorrenza secondo le esigenze di cantiere		х							
01/07/2021	SERENO	abbattimento polveri con autobotte		7,00							
02/07/2021	SERENO	abbattimento polveri con autobotte		6,00							
03/07/2021		nessuna attività	-	-							
04/07/2021		nessuna attività	-	-							
05/07/2021	SERENO	abbattimento polveri con autobotte		5,00							
06/07/2021	SERENO	abbattimento polveri con autobotte		6,00							
07/07/2021	SERENO	abbattimento polveri con autobotte		7,00							
08/07/2021	SERENO	abbattimento polveri con autobotte		4,00							
09/07/2021	SERENO	abbattimento polveri con autobotte	1	6,00							
10/07/2021		nessuna attività	-	-							
11/07/2021		nessuna attività	_	-							
12/07/2021	SERENO	abbattimento polveri con autobotte	1	5,00							
13/07/2021	SERENO	abbattimento polveri con autobotte	1	4,00							
14/07/2021	SERENO	abbattimento polveri con autobotte	1	3,00							
15/07/2021	SERENO	abbattimento polveri con autobotte	1	3,00							
16/07/2021	SERENO	abbattimento polveri con autobotte	1	5,00							
17/07/2021		nessuna attività									
18/07/2021		nessuna attività									
19/07/2021	SERENO	abbattimento polveri con autobotte	1	8,00							
20/07/2021	SERENO	abbattimento polveri con autobotte	1	5,00							
21/07/2021	SERENO	abbattimento polveri con autobotte	1	8,00							
22/07/2021	SERENO	abbattimento polveri con autobotte	1	6,00							
23/07/2021	SERENO	abbattimento polveri con autobotte	1	8,00							
24/07/2021		nessuna attività									
25/07/2021		nessuna attività									
26/07/2021	PIOGGIA	abbattimento polveri con autobotte	-	-							
27/07/2021	VARIABILE	abbattimento polveri con autobotte	1	3,00							
28/07/2021	SERENO	abbattimento polveri con autobotte	1	4,00							
29/07/2021		abbattimento polveri con autobotte									
30/07/2021		abbattimento polveri con autobotte									
30/07/2021		abbattimento polveri con autobotte									
31/07/2021		nessuna attività									